

CLASS: XIth **DATE:**

a) 0 to 10

b) 1 to ∞

SUBJECT: CHEMISTRY

DPP No.: 1

	Topic :- STRUCTURE OF ATOM			
1.	${\rm Mg^{2+}}$ is isoelectrionic wall ${\rm Cu^{2+}}$	[*] исполнения меня настения меня настения настения настения. b) Zn ²⁺	c) Na ⁺	d) Ca ²⁺
2.	The first orbital of H is represented by : $\psi = \frac{1}{\sqrt{\pi}} \left(\frac{1}{a_0}\right)^{3/2} e^{-r/a_0}, \text{ where } a_0 \text{ is Bohr's radius. The probability of finding the electron at a distance } r$ from the nucleus in the region dV is: a) $\psi^2 dr$ b) $\int \psi^2 4\pi r^2 dv$ c) $\psi^2 4\pi r^2 dr$ d) $\int \psi dv$			
	a) $\psi^2 dr$	b) $\int \psi^2 4\pi r^2 dv$	c) $\psi^2 4\pi r^2 dr$	d) $\int \psi d{ m v}$
3.	The correct statement about proton is a) It is a nucleus of deuterium c) It is an ionized hydrogen molecules		b) It is an ionized hydrogen atom d) It is an α - particle	
4.	The energy ΔE corresponds a) 2.10 eV	onding to intense yellow li b) 43.37 eV	ine of sodium of λ, 589 nm c) 47.12 eV	is: d) 2.11 kcal
5.	One electron volt is: a) 1.6×10^{-19} erg	b) $1.6 \times 10^{-12} \text{erg}$	c) $1.6 \times 10^{-8} \text{ erg}$	d) $1.6 \times 10^8 \text{ erg}$
6.	The quantum number that l	nat is in no way related to b) s	other quantum number is c) n	s: d) <i>m</i>
7.	The de-Broglie wavelength a) $\lambda = \frac{12.3 \text{ A}^{\circ}}{\sqrt{V}}$	gth relates to applied volt b) $\lambda = \frac{0.286}{\sqrt{V}} \text{A}^{\circ}$		d) $\lambda = \frac{0.856}{\sqrt{V}} \text{A}^{\circ}$
8.	Calculate the wavelength (in nanometer) associated with a proton moving at $1.0 \times 10^3 \mathrm{ms^{-1}}$ (Mass of proton = $1.67 \times 10^{-27} \mathrm{kg}$ and $h = 6.63 \times 10^{-34} \mathrm{Js}$) a) $0.032 \mathrm{nm}$ b) $0.40 \mathrm{nm}$ c) $2.5 \mathrm{nm}$ d) $14.0 \mathrm{nm}$			
	a) 0.032 IIII	b) 0.40 mm	C) 2.3 IIII	u) 14.0 mm
9.	The number of waves in a) n^2	an orbit are b) $\it n$	c) <i>n</i> – 1	d) <i>n</i> – 2
10.	Which of the following electron transition in hydroa) From $n=1$ to $n=2$ c) From $n=\infty$ to $n=1$		ogen atom will require largest amount of energy? b) From $n=2$ to $n=3$ d) From $n=3$ to $n=5$	
11.	The principal quantum number n can have integral values ranging from:			

c) 1 to (n = l)

d) 1 to 50

12. Electrons will first enter into the set of quantum numbers n = 5, l = 0 or n = 3, l = 2

a) n = 5, l = 0

b) Both possible

c) n = 3, l = 2

d) Data insufficient

13. The relationship between the energy E_1 of the radiation with a wavelength 8000Å and the energy E_2 of the radiation with a wavelength 16000Å is

a) $E_1 = 6E_2$

b) $E_1 = 2E_2$

c) $E_1 = 4E_2$

d) $E_1 = 1/2E_2$

14. Which combinations of quantum numbers n, l, m and s for the electron in an atom does not provide a permissible solution of the wave equation?

a) 3, 2, 1, $\frac{1}{2}$

b) 3, 1, 1, $-\frac{1}{2}$

c) $3, 3, 1, -\frac{1}{2}$

d) $3, 2, -2, \frac{1}{2}$

15. What is the lowest energy of the spectral line emitted by the hydrogen atom in the Lyman series? (h=Planck's constant, c=velocity of light, R=Rydberg's constant).

a) $\frac{5hcR}{36}$

b) $\frac{4hcR}{2}$

c) $\frac{3hcR}{4}$

d) $\frac{7hcR}{144}$

16. Which is not electromagnetic radiation?

a) Infrared rays

b) X-rays

c) Cathode rays

d) γ-rays

17. Which one of the following sets of quantum numbers represents the highest energy level in an atom?

a) $n = 4, l = 0, m = 0, s = +\frac{1}{2}$

b) $n = 3, l = 1, m = 1, s = +\frac{1}{2}$

c) $n = 3, l = 2, m = -2, s = +\frac{1}{2}$

d) $n = 3, l = 0, m = 0, s = +\frac{1}{2}$

18. Which consists of particle of matter?

a) Alpha rays

b) Beta rays

c) Cathode rays

d) All of these

19. If λ_1 and λ_2 are the wavelength of characteristic X-rays and gamma rays respectively, then the relation between them is:

a) $\lambda_1 = 1/\lambda_2$

b) $\lambda_1 = \lambda_2$

c) $\lambda_1 > \lambda_2$

d) $\lambda_1 < \lambda_2$

20. Which best describe the emission spectra of atomic hydrogen?

a) A series of only four lines

- b) A discrete series of lines of equal intensity and equally spaced with respect to wavelength
- c) Several discrete series of lines with both intensity and spacings between lines decreasing as the wave number increase within each series
- d) A continuous emission of radiation of all frequencies