

1

MAHESH SIR'S NOTES - 7798364224

- Calculate the ionic radius of a Cs⁺ ion, assuming that the cell edge length for CsCl is 0.4123 nm and 8. that the ionic radius of a CI⁻ ion is 0.181 nm a) 0.352 nm d) 0.176 nm b) 0.116 nm c) 0.231 nm
- 9. The deuiation from the ideal gas behaviour of a gas can be expressed as

a)
$$Z = \frac{p}{VRT}$$
 b) $Z = \frac{pV}{nRT}$ c) $Z = \frac{nRT}{pV}$ d) $Z = \frac{VT}{pT}$

- 10. Positive deviation from ideal behaviour takes place because of
 - a) Molecular interaction between atom and $\frac{pV}{nRT} > 1$ b) Molecular interaction between atom and $\frac{pV}{nRT} < 1$

 - c) Finite size of atoms and $\frac{pV}{nRT} > 1$
 - d) Finite size of atoms and $\frac{\overline{pV}}{n^{PT}} < 1$
- 11. In an experiment during the analysis of a carbon compound, 145 mL of H₂ was collected at 760 mm Hg pressure and 27°C. The weight of H_2 is nearly : c) 6 g d) 8 g a) 10 mg b) 12 mg
- 12. The pressure and temperature of 4dm³ of carbon dioxide gas are doubled, then the volume of carbon dioxide gas would be c) 4 dm^3 b) 3 dm^3 d) $8 \, dm^3$
 - a) 2 dm^3
- 13. Adiabatic demagnetisation is a technique used for:
 - a) Adiabatic expansion of a gas
 - b) Production of low temperature
 - c) Production of high temperature
 - d) None of the above

14. A real gas at high pressure occupies under identical conditions:

- a) More volume than that of an ideal gas
- b) Less volume than that of an ideal gas
- c) Same volume as that of an ideal gas
- d) More or less volume than that of an ideal gas depending upon the nature of the gas
- 15. Structure similar to zinc blende is found in a) NaCl b) AgCl c) CuCl

d) TlCl

- 16. One mole of a gas is defined as:
 - a) The number of molecules in one litre of gas
 - b) The number of molecules in 2.24 litre of a gas
 - c) The number of atoms contained in 12g of C¹⁴ isotope
 - d) The number of molecules in 22.4 litre of a gas at STP
- 17. The formula for determination of density of unit cell is

Smart DPPs

a) $\frac{a^3 \times N_A}{Z \times M}$ g cm ⁻³ The crystal system of a co	b) $\frac{M \times N_A}{A^3 \times Z}$ g cm ⁻³	c) $\frac{Z \times M}{a^3 \times N_A}$ g cm ⁻³	d) $\frac{a^3 \times M}{Z \times N_0}$ g cm ⁻³
The crystal system of a conduct $\alpha = \beta = 00^{\circ}$ and $x = 0^{\circ}$			$L \wedge N_A$
and $a = b = 90^{\circ}$ and $y = a$	ompound with unit cell di 120° is b) Hexagonal	imensions, $a = 0.387, b =$ c) Orthorhombic	0.387 and $c = 0.504$ nm, d) Rhombohedral
Air at sea level is dense, t a) Boyle's law	his is a practical impleme b) Charles' law	entation of c) Avogadro's law	d) Dalton's law
 20. During the evaporation of liquid a) The temperature of the liquid will rise b) c) May rise or fall depending on the nature 		b) The temperature of the liquid will falld) The temperature remains unaffected	
5 M	RT		IRN
	a) Boyle S law During the evaporation of a) The temperature of th b) May rise or fall depend b) May ri	b) Charles Taw During the evaporation of liquid (a) The temperature of the liquid will rise (b) May rise or fall depending on the nature (c) May rise or fall depending on the nature (c) May rise of fall depending on the nature	b) Charles law During the evaporation of liquid a) The temperature of the liquid will rise b) The temperature of the d) The temperature rem d) The temperature rem d) The temperature rem d) The temperature rem