

CLASS : XIth DATE :

SUBJECT : CHEMISTRY DPP No. : 1

Topic :- THERMODYNAMICS

2011 / 2011 / 2011 / 2011 / 2011 / 2011 / 2011 / 2011 / 2011 / 2011 / 2011 / 2011 / 2011 / 2011 / 2011 / 2011 /

Topic C million D manuel				
1.	Two mole of an ideal gas is expanded isothermally and reversibly from 1 L to 10 L at 300 K. The			
	enthalpy change (in k]) for the process is			
	a) 11.4	b) -11.4	c) 0	d) 4.8
	,		,	,
2.	A gaseous system changes from state $A(P_1, V_1, T_1)$ to $B(P_2, V_2, T_2)$, B to $C(P_3, V_3, T_3)$ and finally from C			
	A. The whole process may	be called:		
	a) Reversible process	b) Cyclic pro <mark>cess</mark>	c) Isobaric process	d) Spontaneous process
3.	One mole of ice is conver	ted into w <mark>ater at 273 K.</mark>	The entropies of $H_2O(s)$	and $H_2O(l)$ are 38.20 and
	$60.01 \text{ J} \text{ mol}^{-1} \text{K}^{-1} \text{ respect}$	ively. The <mark>enthalpy chang</mark>	ge for the conversion is:	
	a) 59.54 J mol ^{-1}	b) 5954 J mol ⁻¹	c) 595.4 J mol ⁻¹	d) 320.6 J mol ⁻¹
4.	For a diatomic molecule A	B. the electronegativity of	lifference between A and	$B = 0.2028\sqrt{\Delta}$. [Where $\Delta =$
	bond energy of AB Geometric mean of the bond energies of A_2 and B_2] The electronegativities of fluorine and chlorine are 4.0 and 3.0 respectively and the bond energies are of F – F: 38 kcal mol ⁻¹ and			
	$Cl - Cl : 58 \text{ kcal mol}^{-1}$. The bond energy of $Cl - F$ is:			
	a) $\sim 71 \text{ kcal/mol}$	b) $\sim 61 \text{ kcal/mol}$	c) ~ 48 kcal/mol	d) ~ 75 kcal/mol
5	Any series of operation so	carried out that at the e	nd, the system is back to i	ts state is called
5.	a) Boyle's cycle	h) Reversible process	c) Adjabatic process	d) Cyclic process
6	The heat of neutralisation of a strong acid and a strong alkali is 57.0 kJ mol ⁻¹ . The heat release 0.5 mole of HNO ₂ solution is mixed with 0.2 mole of KOH is			
0.				
	a) 57.0 kl	h) 11 4 kI	c) 285 kI	d) 34.9 kI
7	The Kirchhoff's equation of	vives the effect of on h	eat of reaction	
<i>·</i> ·	a) Pressure	h) Temperature	c) Volume	d) Molecularity
8	Δn values in $\Delta H = \Delta H + $	ΛnRT may have	e, volume	a) morecularity
0.	a) Integer nature	h) Fractional value	c) Positive or negative	d) All of these
9	AB $A_{\rm a}$ and $B_{\rm a}$ are diatom	ic molecules. If the bond	enthalpies of A ₂ AB and	$R_{\rm are}$ in the ratio 1.1.0 5
5.	and the enthalpy of forma	tion of AB from A_{-} and B	$R_{\rm s} = 100 \rm kJ mol^{-1}$ what	is the bond enthalpy of 4_{-} ?
	a) 400 kI mol^{-1}	h) 200 kI mol ^{-1}	c) 100 kJ mol^{-1}	d) 300 kI mol^{-1}
10	Which of the following i	s an intensive property	c7 100 Kj 1101	
10.	a) Tomporaturo	b) Viscosity	y: c) Surface tension	d) All of those
	a) Temperature	b) VISCOSILY	c) surface tension	d) All of these
4.4				
11.	The temperature of the sy	stem decreases in an		
	a) Adiabatic compression		b) Isotnermal compressi	on
4.2	c) isothermal expansion		d) Adiabatic expansion	
12.	If a refrigerator door is ke	pt open, then we get:		
	a) Room cooled			
	b) Room heated			
	c) More heat is passed out	t		
	d) No effect on room			
13.	The enthalpy of vaporization of a liquid is 30 kJ mol^{-1} and entropy of vaporization is 75 J mol^{-1} .			
	boiling point of liquid at 1	atm is :		
	a) 250 K	b) 400 K	c) 450 K	d) 600 K

1

MAHESH SIR'S NOTES - 7798364224

Smart DPPs

- 14. Which is correct about the heat of combustion?
 - a) The combustion be exothermic in some cases and endothermic in other cases
 - b) Heat of combustion is always exothermic
 - c) Its value change with temperature
 - d) All of the above
- 15. In an isothermal process
- a) q = 0 and ΔE = 0 b) q ≠ 0 and ΔE = 0 c) q = 0 and ΔE ≠ 0 d) q ≠ 0 and ΔE ≠ 0
 16. The enthalpy of combustion of H₂, cyclohexane (C₆H₁₀) and cyclohexane (C₆H₁₂) are -241, -3800 and -3920 kJ per mol respectively. Heat of hydrogenation of cyclohexane is
 - a) 121 kJ/mol b) -121 kJ/mol c) +242 kJ/mol
 - ⟨J/mol d) −242 kJ/mol
- 17. For the isothermal expansion of an ideal gasa) *E* and *H* increasesc) *H* increases but *E* decreases
- b) *E* increases but *H* decreasesd) *E* and *H* are unaltered
- 18. Heat evolved in the reaction, H₂ + Cl₂ → 2HCl is 182 kJ. Bond energies of H-H and Cl-Cl are 430 and 242 kJ/mol respectively. The H-Cl bond energy is :
 a) 245 kJ mol⁻¹
 b) 427 kJ mol⁻¹
 c) 336 kJ mol⁻¹
 d) 154 kJ mol⁻¹
- a) 245 kJ mol⁻²
 b) 427 kJ mol⁻²
 c) 336 kJ mol⁻²
 d) 154 kJ mol⁻²
 e) 19. Which is not correct?
 a) In an exothermic reaction, the enthalpy of products is less than that of reactants
 - b) $\Delta H_{\text{fusion}} = \Delta H_{\text{sublimation}} \Delta H_{\text{vaporisation}}$
 - c) A reaction for which $\Delta H^{\circ} < 0$ and $\Delta S^{\circ} > 0$ is possible at all temperatures
 - d) ΔH is less than ΔU for the reaction,
 - ⁽¹⁾ $C(s) + (1/2)O_2$ (g) $\rightarrow CO_2(g)$
- 20. A cylinder of gas is assumed to contain 11.2 kg of butane (C_4H_{10}). If a normal family needs 20000 kJ of energy per day. The cylinder will last (Given that ΔH for combustion of butane is -2658 kJ) a) 20 days b) 25 days c) 26 days d) 24 days

SMARTLEARN COACHING