

CLASS: XIIth SUBJECT: CHEMISTRY DATE:

DPP NO.: 1

		Topic :-RI	EDOX REACTIONS				
1.	The correct order of re a) $Cl^- > Br^- > I^- >$ b) $Cl^- > I^- > Br^- >$ c) $Br^- > Cl^- > I^- >$ d) $I^- > Br^- > Cl^- >$	F- F-	ions is :				
2.	The reaction, $3ClO^-(aq) \rightarrow ClO_3^-(aq) + 2Cl^-(aq)$ is an example of : a) Oxidation reaction b) Reduction reaction c) Disproportionation reaction d) Decomposition reaction						
3.	The ox.no. of S in $Na_2S_4O_6$ is: a) + 2.5 b) +2 and +3 (two S have +2 and other two have +3) c) +2 and +3 (three S have +2 and one S has +3) d) +5 and 0 (two S have +5 and the other two S have 0)						
4.	Oxidation is a process a) de-electronation	which involves : b) Electronation	c) Addition of hydroge	nd) Addition of metal			
 5. A student states that heating of limestone is an oxidation process, the reason he gives that an oxide of the metal is produced on heating. Which one is correct? a) The statement and reason are true b) The statement and reason are wrong c) The statement is true but the reason is false d) None of the above 							
6.	A sulphur containing s a) $\rm H_2SO_4$	pecies th <mark>at cannot b</mark> e an b) H ₂ S	oxidising agent is : c) SO ₂	d) H ₂ SO ₃			
7.	$KMnO_4$ acts as ind a) Self	icator in its redox titrati b) External	ions. c) Internal	d) Not an			
8. 9.	a) Zinc ions	zinc and iodine in which b) Iodide ions nt of the oxygen family is b) Selenium	zinc iodide is formed, w c) Zinc atom s: c) Sulphur	vhich is oxidised? d) Iodine d) Oxygen			

Smart DPPs

	a) +2	b) +1	c) Zero	d) $+3$				
11.	A compound of Xe and a) -4	F is found to have 53.3% b) Zero	6 Xe. Oxidation number c) +4	of Xe in this compound is : d) +6				
12.	Which combination is odd with respect to oxidation numbers of S, Cr, N and H respectively: a) H_2SO_5 , $H_2S_2O_8$, H_2SO_4 , SF_6 b) $K_2Cr_2O_7$, K_2CrO_4 , CrO_5 , CrO_2Cl_2 c) NH_3 , NH_4^+ , N_3H , NO_2^- d) CaH_2 , NaH , LiH , MgH_2							
13. 0.2 g of a sample of H_2O_2 required 10 mL of N KMnO ₄ in a titration in the presence of H_2SO_4 . Purity of								
H ₂ (D ₂ is : a) 25%	b) 85%	c) 65%	d) 95%				
14. When $KMnO_4$ as oxidising agent and ultimately forms MnO_4^{2-} , Mn_2O_3 and Mn^{2+} , the number of electrons transferred per mole of $KMnO_4$ each case respectively is:								
CICC	a) 4, 3, 1, 5	b) 1, 5, 3, 7	c) 1, 3, 4, 5	d) 1, 3, 8, 5				
15.	Titration of KI with $\rm H_2$ a) Clock reaction	O ₂ in presen <mark>ce of acid is</mark> b) Redox reaction	a : c) Intermolecular redo	xd) All of these				
16. Con	Oxidation state of n npound a) $[Co(NH_3)_5Cl]Cl_2$ b) NH_2OH c) $(N_2H_5)_2SO_4$ d) Mg_3N_2	itrogen is incorrectly given the object of t	ven for :					
 17. Fluorine exhibits only -1 oxidation state, while iodine exhibits oxidation states of -1, +1, +3, +5 and +7. This is due to: a) Fluorine being a gas b) Available <i>d</i>-orbitals in iodine 								
	c) Non-availability of a d) None of the above	^L orbitals in iodine		AISIN				
18.	Elements which genera a) Metalloid	ally exhibit m <mark>ul</mark> tiple oxid b) Non-m <mark>etals</mark>	lation states and whose c) Metals	ions are coloured are known as d) Transition metals				
19.	The oxidation state of sa) 2	sulphur in sodium tetrat b) 0	hionate ($Na_2S_4O_6$) is c) 2.5	d) 3.5				
20.	Which is strongest oxide a) $\rm O_3$	dising agent? b) 0 ₂	c) Cl ₂	d) F ₂				