



|    | DPP<br>DAILY PRACTICE PROBLEMS                                                                                                                                                |                                                                                                                                      |                                                                                 |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|
|    | CLASS : ХІтн<br>DATE :                                                                                                                                                        |                                                                                                                                      | SUBJECT : PHYSICS<br>DPP NO. : 1                                                |  |  |  |  |
|    |                                                                                                                                                                               |                                                                                                                                      |                                                                                 |  |  |  |  |
| 1. | In an experiment,<br>a bridge by dropping stone into water underner<br>2s, then the error in estimation of height of br<br>a) $0.49 m$ b) $0.98 m$                            | eath, if the error in measure<br>ridge will be<br>c) 1.96 m                                                                          | to measure the height of ement of time is $0.1s$ at the end of d) 2.12 $m$      |  |  |  |  |
| 2. | The dimension of $k$ in the equation $W = \frac{1}{2}kx^2$<br>a) [ML <sup>0</sup> T <sup>-2</sup> ] b) [M <sup>0</sup> LT <sup>-1</sup> ]                                     | <sup>2</sup> is<br>c) [MLT <sup>-2</sup> ]                                                                                           | d) [ML <sup>0</sup> T <sup>-1</sup> ]                                           |  |  |  |  |
| 3. | A body of mass $m = 3.513$ kg is moving along<br>momentum is recorded as<br>a) 17.6 kg ms <sup>-1</sup> b) 17.565 kg ms <sup>-1</sup>                                         | the $x$ —axis with a speed of $x$ = $17.56$ kg ms <sup>-1</sup>                                                                      | of 5.00 ms <sup>-1</sup> . The magnitude of its<br>d) 17.57 kg ms <sup>-1</sup> |  |  |  |  |
| 4. | The dimensional formula for the modulus of rig<br>a) $ML^2T^{-2}$ b) $ML^{-1}T^{-3}$                                                                                          | gidity is<br>c) $ML^{-2}T^{-2}$                                                                                                      | d) $ML^{-1}T^{-2}$                                                              |  |  |  |  |
| 5. | The unit of physical quantity obtained by the li<br>a) $NC^{-1}$ b) $Vm^{-1}$                                                                                                 | ne intergral of electric field<br>c) JC <sup>-1</sup>                                                                                | d) $C^2 N^{-1} m^{-2}$                                                          |  |  |  |  |
| 6. | The dimensions of gravitational constant $G$ and<br>a) $[ML^{3}T^{-2}]$ ; $[ML^{2}T^{0}]$<br>c) $[M^{-1}L^{3}T^{-2}]$ ; $[M^{-1}L^{2}T]$                                      | d the moment of inertia are<br>b) $[M^{-1}L^{3}T^{-2}]$ ; $[ML^{2}T^{-2}]$<br>d) $[ML^{3}T^{-2}]$ ; $[M^{-1}L^{2}T^{-2}]$            | e respectively<br><sup>0</sup> ]<br>]                                           |  |  |  |  |
| 7. | Unit of stress is<br>a) $N/mb$ $N-mc$                                                                                                                                         | N/m <sup>2</sup>                                                                                                                     | d) $N-m^2$                                                                      |  |  |  |  |
| 8. | Crane is British unit of volume (one crane = $170$<br>a) 0.170474 m <sup>3</sup> b) 17.0474m <sup>3</sup>                                                                     | 0.4742). convert crane into<br>c) 0.00170474m <sup>3</sup>                                                                           | o SI units.<br>d) 1704.74m <sup>3</sup>                                         |  |  |  |  |
| 9. | SI unit of intensity of wave is<br>a) $Jm^{-2}s^{-1}$ b) $Jm^{-1}s^{-2}$                                                                                                      | c) W m <sup>-2</sup>                                                                                                                 | d) J m <sup>-2</sup>                                                            |  |  |  |  |
| 10 | <ul> <li>If F denotes force and t time, then in equation</li> <li>a) [LT<sup>-4</sup>] and [LT<sup>-1</sup>]</li> <li>c) [MLT<sup>-4</sup>] and [MLT<sup>-1</sup>]</li> </ul> | $F = at^{-1} + bt^2$ , the dim<br>b) [LT <sup>-1</sup> ] and [LT <sup>-4</sup> ]<br>d) [MLT <sup>-1</sup> ] and [MLT <sup>-1</sup> ] | ensions of $a$ and $b$ respectively are $^{-4}$ ]                               |  |  |  |  |

- 11. If the constant of gravitation (*G*), Plank's constant (*h*) and the velocity of light (*c*) be chosen as fundamental units. The dimension of the radius of gyration is a)  $h^{1/2}c^{-3/2}G^{1/2}$  b)  $h^{1/2}c^{3/2}G^{1/2}$  c)  $h^{1/2}c^{-3/2}G^{-1/2}$  d)  $h^{-1/2}c^{-3/2}G^{1/2}$
- 12. The mass and volume of a body are found to be  $500 \pm 0.05 \ kg$  and  $1.00 \pm 0.05 m^3$  respectively. Then the

|     |                                                                                                                                                                                              |                                                                                                     | Sm                                                                                                  | art DPPs                                                                                                |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| 3   | COACHING                                                                                                                                                                                     |                                                                                                     |                                                                                                     |                                                                                                         |  |  |
|     | maximum possible perc<br>a) 6%                                                                                                                                                               | entage error in its densit<br>b) 3%                                                                 | y is<br>c) 10%                                                                                      | d) 5%                                                                                                   |  |  |
| 13. | The unit of Stefan's con<br>a) $W m^{-2} K^{-1}$                                                                                                                                             | stant $\sigma$ is<br>b) $W m^2 K^{-4}$                                                              | c) $W m^{-2} K^{-4}$                                                                                | d) $W m^{-2} K^4$                                                                                       |  |  |
| 14. | In the equation $y = a$ s<br>a) $[M^0L^0T^{-1}]$                                                                                                                                             | in ( $\omega t + kx$ ,) the dimensible b) [M <sup>0</sup> LT <sup>-1</sup> ]                        | ional formula of $\omega$ is c) $[ML^0T^0]$                                                         | d) $[M^0 L^{-1} T^0]$                                                                                   |  |  |
| 15. | The following observati<br>Diameter of capillary, <i>D</i><br>Taking $g = 9.80 \text{ms}^{-2}$ a<br>tension <i>T</i> ?                                                                       | ons were take for determ<br>$y = 1.25 \times 10^{-2}$ m and rind using the relation $T =$           | ining surface tension of v<br>se of water in capillary. $h = (rgh/2) \times 103 \text{Nm}^{-1}$ , w | water by capillary tube method.<br>$u = 1.46 \times 10^{-2}$ m<br>what is the possible error in surface |  |  |
|     | a) 2.4%                                                                                                                                                                                      | b) 15%                                                                                              | c) 1.6%                                                                                             | d) 0.15%                                                                                                |  |  |
| 16. | <i>R</i> and <i>L</i> represent respectively resistance and self inductance, which of the following combinations has the dimensions of frequency                                             |                                                                                                     |                                                                                                     |                                                                                                         |  |  |
|     | a) $\frac{R}{L}$                                                                                                                                                                             | b) $\frac{L}{R}$                                                                                    | c) $\sqrt{\frac{R}{L}}$                                                                             | d) $\sqrt{\frac{L}{R}}$                                                                                 |  |  |
| 17. | The random error in the arithmetic mean of 100 observations is $x$ ; then random error in the arithmetic mean of 4000 observations would be                                                  |                                                                                                     |                                                                                                     |                                                                                                         |  |  |
|     | a) 4 <i>x</i>                                                                                                                                                                                | b) $\frac{1}{4}x$                                                                                   | c) 2 <i>x</i>                                                                                       | d) $\frac{1}{2}x$                                                                                       |  |  |
| 18. | Which of the following<br>a) Pressure = Energy pe<br>b) Pressure = Energy pe<br>c) Pressure = Force per<br>d) Pressure = Momentu                                                             | is dimensionally correct<br>r unit area<br>r unit volume<br>unit volume<br>m per unit volume per ur | nit time                                                                                            |                                                                                                         |  |  |
|     |                                                                                                                                                                                              |                                                                                                     |                                                                                                     |                                                                                                         |  |  |
| 19. | 19. <i>R</i> , <i>L</i> and <i>C</i> represent the physical quantities resistance, inductance and capacitance respectively. Whi one of the following combination has dimension of frequency? |                                                                                                     |                                                                                                     |                                                                                                         |  |  |
|     | a) $\frac{1}{\sqrt{RC}}$                                                                                                                                                                     | b) $\frac{R}{L}$                                                                                    | c) $\frac{1}{LC}$                                                                                   | d) $\frac{c}{L}$                                                                                        |  |  |
| 20. | If the length of a rectan<br>= 0.1 cm, then the area                                                                                                                                         | gle <i>l</i> = 10.5 cm, breadth<br>is                                                               | $b = 2.1 	ext{ cm}$ and minimum                                                                     | m possible measurement by scale                                                                         |  |  |
|     | a) 22.0 cm <sup>2</sup>                                                                                                                                                                      | b) 22.1 cm <sup>2</sup>                                                                             | c) 22.05 cm <sup>2</sup>                                                                            | d) 22 cm <sup>2</sup>                                                                                   |  |  |
|     |                                                                                                                                                                                              |                                                                                                     |                                                                                                     |                                                                                                         |  |  |