

DPP					
DAILY PRACTICE PROBLEMS					

CLASS : XITH DATE :

SUBJECT : PHYSICS DPP NO. : 1

Topic :- MOTION IN A PLANE

- A ball rolls of the top of stair-way with a horizontal velocity of magnitude 1.8 ms⁻¹. The steps are 0.20 m 1. high and 0.20 m wide. Which step will the ball hit first? a) First b) Second c) Third d) Fourth
- 2. A body of mass 100 g is rotating in a circular path of radius r with constant velocity. The work done in one complete revolution is c) (100/r)Jb) (r/100)J d) Zero
 - a) 100 rJ
- 3. In uniform circular motion of a particle
 - a) Velocity is constant but acceleration is variable
 - b) Velocity is variable but acceleration in constant
 - c) Both speed and acceleration are constant
 - d) Speed is constant but acceleration is variable
- A small sphere is attached to a cord and rotates in a vertical circle about a point O. If the average speed of 4. the sphere is increased, the cord is most likely to break at the orientation when the mass is at

	$C \bigcirc O \bigcirc D$						
	a) Bottom point <i>B</i>	b) Top point A	c) The point <i>D</i>	d) The point <i>C</i>			
5.	L in vertical plane. If the	ratio of the maximum t	-	whirling in a circular path of radius onsion in the string is 4. What is d) 20 ms ⁻¹			
6.	A proton in a cyclotron c average acceleration dur a) 2.5 kms^{-2} at 37° E of S c) 2.5 kms^{-2} at 37° N of	ing this time	h 30kms ⁻¹ north to 40km b) 2.5 kms ⁻² at 37° d) 2.5 kms ⁻² at 37°				
7.	A man can throw a stone metre, is a) 30 m						

8. The bob of a pendulum of mass m and length L is displaced, 90° from the vertical and gently released. In

MAHESH SIR'S NOTES - 7798364224

	order that the string may a) <i>m</i> g	not break upon passing th b) 2 mg	rough the lowest point, its i c) 3 <i>m</i> g	minimum strength must be d) 4 <i>m</i> g		
9.	An aeroplane is flying horizontally with a constant velocity of 100 kmh^{-1} at a height of 1 km from the ground level. At $t = 0$, it starts dropping packets at constant time intervals of T_0 . If R represents the separation between two consecutive points of impact on the ground, then for the first three packets, R_1/R_2 is a) 1 b) >1 c) <1					
10	 c) <1 d) Sufficient data is not given 10. A particle is acted upon by a force of constant magnitude which is always perpendicular to the 					
10.		e particle takes place in a				
11.	A stone is just released front hit the ground following			ing along a horizontal straight track. The stone will		
	a) Straight path	b) Circular path	c) Parabolic path	d) Hyperbolic path		
12.	2. A cyclist riding the bicycle at a speed of $14\sqrt{3} m s^{-1}$ takes a turn around a circular road of radius $20\sqrt{3} m$ without skidding. Given $g = 9.8 m s^{-2}$, what is his inclination to the vertical					
	a) 30 ^o	b) 90°	c) 45°	d) 60 ^o		
13.	flight is T_1 . When the same	ne projectile is throwing wi	h the horizontal, its horizon th the same speed at some t is T_2 . The product of T_1 ar c) $\frac{3R}{g}$	other angle with the		
14.	^{14.} The equation of a projectile is $y = \sqrt{3}x - \frac{gx^2}{2}$. The angle of projection is given by					
	a) $\tan \theta = \frac{1}{\sqrt{3}}$	b) $\tan \theta = \sqrt{3}$	c) $\frac{\pi}{2}$	d) Zero		
15.	5. A cyclist is moving on a circular track of radius 80 m with a velocity $v = 36 \text{ kmh}^{-1}$. He has to lean from the vertical approximately through an angle (take $g = 10 \text{ ms}^{-2}$) a) $\tan^{-1}(4)$ b) $\tan^{-1}\left(\frac{1}{3}\right)$ c) $\tan^{-1}\left(\frac{1}{4}\right)$ d) $\tan^{-1}\left(\frac{1}{8}\right)$					
4.6		(3)	(4)	(8/		
16.	5. A particle of mass m is fixed to one end of a light spring of force constant k and unstretched length l . The system is rotated about the other end of the spring with an angular velocity ω , in gravity free space. As shown in figure the increase in length of the spring will be					
	a) $\frac{m \omega^2 l}{k}$	b) $\frac{m \omega^2 l}{k - m \omega^2}$	c) $\frac{m \omega^2 l}{k + m \omega^2}$	d) None of these		
17.	7. If a person can throw a stone to maximum height of h metre vertically, then the maximum distance through which it can be thrown horizontally by the same person is					
	a) $\frac{h}{2}$	b) <i>h</i>	c) 2 <i>h</i>	d) 3 <i>h</i>		

- 18. A particle is tied to 20*cm* long string. It performs circular motion in vertical plane. What is the angular velocity of the string when the tension in the string at the top is zero
 a) 5 rad/sec
 b) 2 rad/sec
 c) 7.5 rad/sec
 d) 7 rad/sec
- 19. The maximum and minimum tensions in the string whirling in a circle of radius 2.5 m are in the ratio 5:3, then its velocity is

a) $\sqrt{98}$ ms⁻¹ b) 7 ms⁻¹ c) $\sqrt{490}$ ms⁻¹ d) $\sqrt{4.9}$ ms⁻¹

20. Two bodies are projected from the same point with equal speeds in such directions that they both strike the same point on a plane whose inclination is β . If α be the angle of projection of the first body with the horizontal the ratio of their times of flight is

a)
$$\frac{\cos \alpha}{\sin(\alpha + \beta)}$$
 b) $\frac{\sin(\alpha + \beta)}{\cos \alpha}$ c) $\frac{\cos \alpha}{\sin(\alpha - \beta)}$ d) $\frac{\sin(\alpha - \beta)}{\cos \alpha}$

SMARTLEARN COACHING