
CLASS : XIth Date : SUBJECT : PHYSICS DPP No. : 1

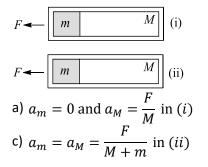
Topic :- LAWS OF MOTION

1. The pulleys and strings shown in the figure are smooth and of negligible mass. For the system to remain in equilibrium, the angle θ shopuld be

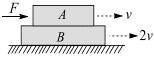
2. An insect crawls up a hemispherical surface very slowly. The coefficient of friction between the insect and the surface is 1/3. If the line joining the centre of the hemispherical surface to the insect makes an angle α with the vertical, the maximum possible value of α is given by

- b) $\tan \alpha = 3$
- c) $\sec \alpha = 3$

d) cosec $\alpha = 3$

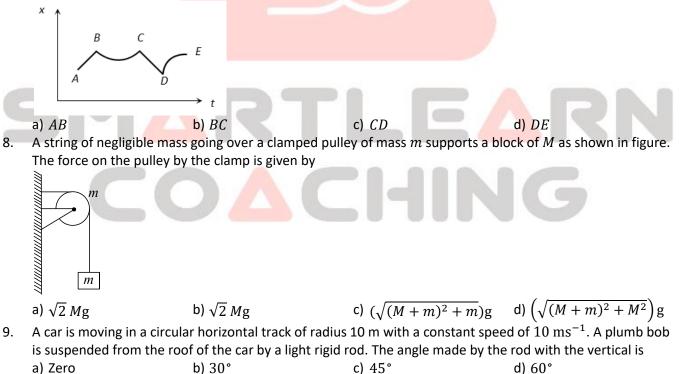

3. Which of the following are correct?

A parachutist of weight W strikes the ground with his legs and comes to rest with an upward a) acceleration of magnitude 3 g. force exerted on him by ground during landing is 4 W


- ⁽¹⁾ Two massless spring balances are hung vertically in series from a fixed point and a mass M kg is attached to the lower end of the lower spring balance. Each spring balance reads M kgf
- A rough vertical broad has an acceleration a along the horizontal direction so that a block of mass m c) pressing against its vertical side does not fall. The coefficient of friction between the block and the broad
- c) pressing against its vertical side does not fall. The coefficient of friction between the block and the broad is greater than g/a
- d) A man is standing at a spring platform. If man jumps away from the platform the reading of the spring balance first increases and then decreases to zero
- 4. A block of mass *m* is placed in contact with one end of a smooth tube of mass*M*. A horizontal force *F* acts in the tube in each case (i) and (ii). Then,

Smart DPPs

- b) $a_m = a_M = \frac{F}{M+m}$ in (*i*) d) Force on *m* is $\frac{mF}{M+m}$ in (*ii*)
- 5. Two blocks A and B of masses m_A and m_B have velocity v and d2v, respectively, at a given instant. 000000A horizontal force F acts on the blockA. There is no friction between ground and block B and coefficient of friction between A and B is μ . The friction

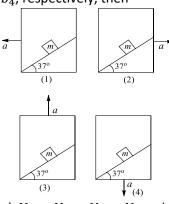


a) On A supports its motion

c) On B opposes its motion

6.

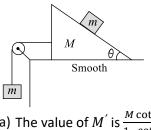
- b) On B opposes its motion relative to A
 d) Opposes the motion of both
- Mark the correct statement (s) regarding friction
- a) Friction force can be zero, even through the contact surface is rough
 - b) Even though there is no relative motion between surfaces, frictional force may exist between them
 - c) The expression $f_L = \mu_s N$ or $f_k = \mu_k N$ are approximate expression
 - d) The expression $f_L = \mu_s N$ tells that the directions of f_L and N are the same
- 7. Figure shows the displacement of particle going along the *X*-axis as a function of time. The force acting on the particle is zero in the region



10. A block of mass m is placed on a wedge. The wedge can be accelerated in four manners marked as (1), (2), (3) and (4) as shown. If the normal reactions in situations (1), (2), (3) and (4) are N_1, N_2, N_3 and N_4 ,

Smart DPPs

respectively, and acceleration with which the block slides on the wedge in the situations are b_1 , b_2 , b_3 and b_4 , respectively, then

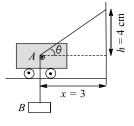


a) $N_3 > N_1 > N_2 > N_4$ b) $N_4 > N_3 > N_1 > N_2$ c) $b_2 > b_3 > b_4 > b_1$ d) $b_2 > b_3 > b_1 > b_4$

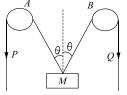
- 11. A 3 kg block of wood is on a level surface where $\mu_s = 0.25$ and $\mu_k = 0.2$. A force of 7 N is being applied horizontally to the block. Mark the correct statement (s) regarding this situation
 - a) If the block is initially at rest, it will remain at rest and friction force will be about 7 N
 - b) If the block is initially moving, then it will continue its motion forever if force applied is in the direction of motion of the block
 - ^{c)} If the block is initially moving and the direction of applied force is same as that of motion of block, then block moves with an acceleration of $1/3 \text{ ms}^{-2}$ along its initial direction of motion
 - d) If the block is initially moving and direction of applied force is opposite to that of initial motion of block, then block decelerates, comes to a stop, and starts moving in the opposite direction
- 12. 80 railway wagons all of same mass 5×10^3 kg are pulled by an engine with a force of 4×10^5 N. The tension in the coupling between 30th and 31st wagon from the engine is

a) $25 imes 10^4$ N	b) 40 $ imes$ 10^4 N	c) 20×10^4 N	d) 32 $ imes$ 10^4 N
SM/	\RT	LE	ΔRN

13. The figure shows a block of mass m placed on a smooth wedge of massM. Calculate the minimum value of M' and tension in the string, so that the block of mass m will move vertically downward with acceleration 10 ms^{-2}


- a) The value of M' is $\frac{M \cot \theta}{1 \cot \theta}$ b) The value of M' is $\frac{M \tan \theta}{1 - \tan \theta}$
- c) The value of tension in the string is $\frac{mg}{\tan\theta}$

d) The value of tension is , $\frac{Mg}{\cot\theta}$


- 14. A block of mass 0.1 kg is held against a wall applying a horizontal force of 5 N on the block. If the coefficient of friction between the block and the wall is 0.5, the magnitude of the friction force acting on the block is a) 2.5 N b) 0.98 N d) 0.49 N c) 4.9 N
- 15. The string shown in the figure is passing over small smooth pulley rigidly attached to trolley A. If the speed of trolley is constant and equal to v_A towards right, speed and magnitude of acceleration of block B at the instant shown in figure are

b) $a_{B} = 0$ a) $v_B = v_A, a_B = 0$

c) $v_B = \frac{3}{5}v_A$

- d) $a_B = \frac{16v_A^2}{125}$
- 16. In the arrangement shown in the figure, the ends P and Q of an unstretchable string move downwards with uniform speedU. Pulleys A and B are fixed

Mass *M* moves upwards with speed a) 2 $U \cos \theta$ b) $U/\cos\theta$

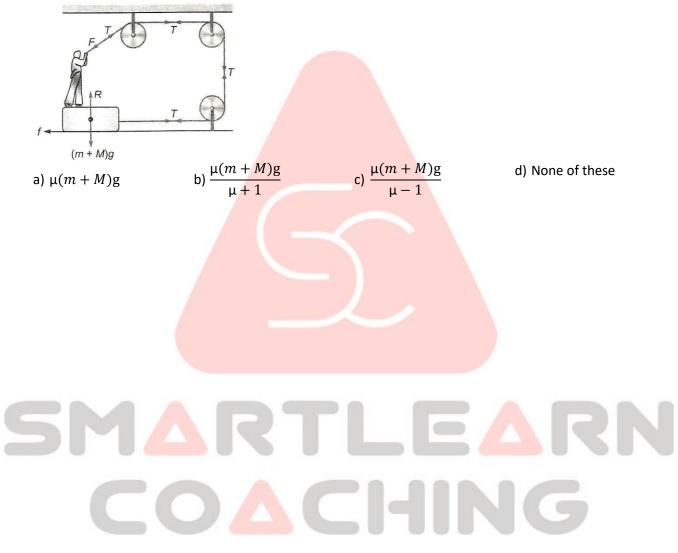
c) $2 U / \cos \theta$

d) $U \cos \theta$

- 17. Suppose a body, which is acted on by exactly two forces, is accelerated. For this situation, mark the incorrect statement (s)
 - a) The body can't move with constant speed
- b) The velocity can never be zero
- c) The vector sum of two forces can't be zero
- d) The two forces must act in the same line
- 18. Seven pulleys are connected with the help of three light strings as shown in the figure below. Consider P₃, P₄, P₅ as light pulleys and pulleys P₆ and P₇ have masses m each. For this arrangement, mark the correct statement (s) 11/1/1

$$P_{1} \bigcirc P_{2}$$

$$P_{3} \bigcirc P_{4}$$


$$P_{5} \bigcirc P_{6}$$

- a) Tension in the string connecting P_1 , P_3 , and P_4 is zero
- b) Tension in the string connecting P_1 , P_3 and P_4 is mg/3
- c) Tensions in all the three strings are same and equal to zero
- d) Acceleration of P_6 is g downwards and that of P_7 is g upwards

Smart DPPs

- 19. If a dipole is situated in a non uniform field,
 - a) $\sum \vec{F} = 0, \sum \vec{\tau} = 0$ b) $\sum \vec{F} \neq 0, \text{but} \sum \vec{\tau} = 0$ c) $\sum \vec{F} = 0, \text{but} \sum \vec{\tau} \neq 0$ d) $\sum \vec{F} \neq 0, \sum \vec{\tau} \neq 0$
- 20. A man of mass M is standing on a board of mass m. The friction coefficient between the board and the floor is μ , figure. The maximum force that the man can exert on the rope so that the board does not move is

