

a) (7, 4) b) (8, 14) c) (12, 21) d) None of these

1

MAHESH SIR'S NOTES - 7798364224

ma

10. What is the equation of the locus of a point which moves such that 4 times its distance from the *x*-axis is the square of its distance from the origin?

	a) $x^2 + y^2 - 4y = 0$	b) $x^2 + y^2 - 4 y = 0$	c) $x^2 + y^2 - 4x = 0$	d) $x^2 + y^2 - 4 x = 0$
11.	If $a^2 + b^2 = c^2$, then <i>s</i> (a) a^2b^2	(s-a)(s-b)(s-c) is e b) $\frac{1}{4}a^2b^2$	equal to c) $\frac{1}{2}a^2b^2$	d) $\frac{1}{2}ab$
12.	The harmonic conjugat a) $(-8, -14)$	te of (4, –2) with respect b) (2, 3)	t to (2, -4) and (7,1) is c) (-2, -3)	d) (13, -5)
13.	If <i>O</i> is the origin and <i>P</i> (a) $x_1x_2 + y_1y_2$	$(x_1, y_1), Q(x_2, y_2)$ are two b) $x_1y_2 + x_2y_1$	to points, then $OP.OQ$ since $ x_1y_2 - x_2y_1 $	$d \ge POQ =$
14.	If $\triangle ABC$, if $a = 3, b = 4$ a) $4/5$	t, c = 5, then the value o b) $3/20$	f sin 2 <i>B</i> is c) 24/25	d) 1/50
15. con aer	From an aeroplane ver secutive milestones on a oplane above the road is a) $\frac{\tan \alpha + \tan \beta}{\tan \alpha \tan \beta}$	tically over a straight ho opposite sides of the aer b) $\frac{\tan \alpha \tan \beta}{\tan \alpha + \tan \beta}$	rizontal road, the angles oplane are observed to 1 c) $\frac{\cot \alpha \cot \beta}{\cot \alpha + \cot \beta}$	s of depression of two be α and β . The height of the d) None of these
16.	In $\triangle ABC$, if $\angle A = 45^{\circ}$, a) 0	$\angle B = 75^\circ$, then $a + c\sqrt{2}$ b) 1	is equal to c) <i>b</i>	d) 2 <i>b</i>
17. Three vertical poles of heights h_1 , h_2 and h_3 at the vertices A , B and C of a $\triangle ABC$ subtend angles α , β and γ respectively at the circumcentre of the triangle. If $\cot \alpha$, $\cot \beta$ and $\cot \gamma$ are in AP, then h_1 , h_2 , h_3 are in				
	a) AP	b) GP	c) HP	d) None of these
18.	. The area enclosed within the curve $ x + y = 1$ is			

b) $2\sqrt{2}$ sq units c) $\sqrt{2}$ sq units a) 1 sq unit d) 2 sq units

19. *P* is a point on the segment joining the feet of two vertical poles of height *a* and *b*. The angles of elevation of the top of the poles from *P* are 45° each. Then, the squre of the distance between the top of the poles is c) $2(a^2 + b^2)$ d) $4(a^2 + b^2)$ b) $a^2 + b^2$

a)
$$\frac{a^2 + b^2}{2}$$

20. By rotating the coordinates axes through 30° in anticlockwise sense the equation $x^2 + 2\sqrt{3}xy - y^2 =$ $2a^2$ changes to

a) $X^2 - Y^2 = 3a^2$ b) $X^2 - Y^2 = a^2$ c) $X^2 - Y^2 = 2a^2$ d) None of these