COACHING

Class: XIth Date:

Solutio

Subject : MATHS DPP No. :1

Topic:-SETS

1 **(b)**

For any $a \in R$, we have $a \ge a$

Therefore, the relation R is reflexive.

R is not symmetric as $(2,1) \in R$ but $(1,2) \notin R$. The relation *R* is transitive also, because $(a,b) \in R$, $(b,c) \in R$ imply that $a \ge b$ and $b \ge c$ which in turn imply that $a \ge c$

2 **(d)**

Clearly, R is an equivalence relation

3 (c)

Let *M* and *E* denote the sets of students who have taken Mathematics and Economics respectively. Then, we have

$$n(M \cup E) = 35, n(M) = 17 \text{ and } n(M \cap E') = 10$$

Now

$$n(M \cap E') = n(M) - n(M \cap E)$$

$$\Rightarrow 10 = 17 - n(M \cap E) \Rightarrow n(M \cap E) = 7$$

Now

$$n(M \cup E) = n(M) + n(E) - n(M \cap E)$$

$$\Rightarrow 35 = 17 + n(E) - 7 \Rightarrow n(E) = 25$$

$$n(E \cap M') = n(E) - n(E \cap M) = 25 - 7 = 18$$

4 (a)

Let $A = \{n(n+1)(2n+1): n \in Z\}$

Putting $n = \pm 1, \pm 2, \dots$, we get $A = \{ \dots -30, -6, 0, 6, 30, \dots \}$

$$\Rightarrow \qquad \{n(n+1)(2n+1): n \in Z\} \subset \{6k: k \in Z\}$$

5 (a)

$$A \cup B = \{1, 2, 3, 4, 5, 6\}$$

$$\therefore (A \cup B) \cap C = \{1, 2, 3, 4, 5, 6\} \cap \{3, 4, 6\}$$

 $= \{3, 4, 6\}$

6

We have,

$$n(A \cap \overline{B}) = 9, n(\overline{A} \cap B) = 10$$
 and $n(A \cup B) = 24$

$$\Rightarrow n(A) - n(A \cap B) = 9, n(B) - n(A \cap B) = 10 \text{ and, } n(A) + n(B) - n(A \cap B) = 24$$

$$\Rightarrow n(A) + n(B) - 2n(A \cap B) = 19 \text{ and } n(A) + n(B) - n(A \cap B) = 24$$

 $\Rightarrow n(A \cap B) = 5$

(d)

$$n(A) = 14 \text{ and } n(B) = 15$$

Hence,
$$n(A \times B) = 14 \times 15 = 210$$

7 **(a)**

Clearly, $P \subset T$

$$\therefore P \cap T = P$$

8 **(a)**

It is given that A is a proper subset of B

$$A - B = \Phi \Rightarrow n(A - B) = 0$$

We have, n(A) = 5. So, minimum number of elements in *B* is 6

Hence, the minimum possible value of $n(A \Delta B)$ is n(B) - n(A) = 6 - 5 = 1

Smart DPPs

- 9 **(d)**
- $\therefore n(A \times B \times C) = n(A) \times n(B) \times n(C)$
- $n(C) = \frac{24}{4 \times 3} = 2$
- 10 **(b)**
- Use $n(A \cup B) = n(A) + n(B) n(A \cap B)$
- 11 (d)
- $A = \{(a, b): a^2 + 3b^2 = 28, a, b \in Z\}$
- ={(5, 1), (-5, -1), (5, -1), (-5, 1), (1, 3), (-1, -3), (-1, 3),
- (1, -3), (4, 2), (-4, -2), (4, -2), (-4, 2)
- And $B = \{(a, b): a > b, a, b \in Z\}$
- $A \cap B = \{(-1, -5), (1, -5), (-1, -3), (1, -3), (4, 2), (4, -2)\}$
- \therefore Number of elements in $A \cap B$ is 6.
- 13 (d)

We have

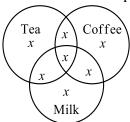
 $R = \{(1,39), (2,37), (3,35), (4,33), (5,31), (6,29),$

(7,27), (8,25), (9,23), (10,21), (11,19), (12,17),

(13,15), (14,13), (15,11), (16,9), (17,7), (18,5),

(19,3),(20,1)

Since $(1,39) \in R$, but $(39,1) \notin R$


Therefore, *R* is not symmetric

Clearly, R is not reflexive. Now, $(15,11) \in R$ and $(11,19) \in R$ but $(15,19) \notin R$

So, *R* is not transitive

14 (c)

Total number of employees = 7x i.e. a multiple of 7. Hence, option (c) is correct

- 15 (a)
- The power set of a set containing n elements has 2^n elements.
- Clearly, 2^n cannot be equal to 26
- 16 **(b)**
- The relation is not symmetric, because $A \subset B$ does not imply that $B \subset A$. But, it is anti-symmetric because $A \subset B$ and $B \subset A \Rightarrow A = B$
- 18 (c)
- We have, $A \supset B \supset C$
- $A \cup B \cup C = A$ and $A \cap B \cap C = C$
- \Rightarrow $(A \cup B \cup C) (A \cap B \cap C) = A C$
- 19 **(c**
- Given, n(C) = 63, n(A) = 76 and $n(C \cap A) = x$
- We know that,
- $n(C \cup A) = n(C) + n(A) n(C \cap A)$
- \Rightarrow 100 = 63 + 76 $x \Rightarrow x = 139 100 = 39$
- And $n(C \cap A) \leq n(C)$
- \Rightarrow $x \le 63$
- $\therefore 39 \le x \le 63$

- 20 **(b)**
- We have,
- X =Set of some multiple of 9

Smart DPPs

and, Y = Set of all multiple of 9 $\therefore X \subset Y \Rightarrow X \cup Y = Y$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	D	С	A	A	D	A	A	D	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	D	D	D	С	A	В	D	С	С	В

