



Smart DPPs

= 60 + 120 + 60 + 6= 2466 (a) Required number of ways = ${}^{8}C_{5}$ $=\frac{8\times7\times6}{3\times2\times1}=56$ The total number of ways a voter can vote $= {}^{8}C_{1} + {}^{8}C_{2} + {}^{8}C_{3} + {}^{8}C_{4} + {}^{8}C_{5}$ = 8 + 28 + 56 + 70 + 56 = 218 7 (c) From the first set, the number of ways of selection two lines =⁴ C_2 From the second set, the number of ways of selection two lines $={}^{3}C_{2}$ Since, these sets are intersect, therefore they from a parallelogram, \therefore Required number of ways = ${}^{4}C_{2} \times {}^{3}C_{2}$ $= 4 \times 3 = 12$ 8 (b) Since, a set of *m* parallel lines intersecting a set of another *n* parallel lines in a plane, then the number of parallelograms formed is ${}^{m}C_{2} \times {}^{n}C_{2}$. 9 ${}^{50}C_4 + \sum_{m=1}^{6} {}^{56-r}C_3$ $= {}^{50}C_4 + {}^{55}C_3 + {}^{54}C_3 + {}^{53}C_3 + {}^{52}C_3 + {}^{51}C_3 + {}^{50}C_3$ $= {}^{51}C_4 + {}^{51}C_3 + {}^{52}C_3 + {}^{53}C_3 + {}^{54}C_3 + {}^{55}C_3$ $\begin{bmatrix} \because {}^{n}C_{r} + {}^{n}C_{r+1} = {}^{n+1}C_{r+1} \end{bmatrix}$ = ${}^{52}C_{4} + {}^{52}C_{3} + {}^{53}C_{3} + {}^{54}C_{3} + {}^{55}C_{3}$ $= {}^{53}C_4 + {}^{53}C_3 + {}^{54}C_3 + {}^{55}C_3$ = ${}^{54}C_4 + {}^{54}C_3 + {}^{55}C_3 = {}^{55}C_4 + {}^{55}C_3 = {}^{56}C_4$ 10 (a) Total number of four digit numbers = $9 \times 10 \times 10 \times 10$ = 9000Total number of four digit numbers which divisible by 5 $= 9 \times 10 \times 10 \times 2 = 1800$ \therefore Required number of ways = 9000 - 1800 = 7200 11 (a) Man goes from Gwalior to Bhopal in 4 ways and they come back in 3 ways. \therefore Total number of ways= 4 \times 3 = 12 ways 12 (c) Here, we have 1 *M*, 4 *I*'s, 4 *S*'s and 2 *P*'s ∴ Total number of selections = (1+1)(4+1)(2+1) - 1 = 14913 (c) Number of lines from 6 points $=^{6} C_{2} = 15$ Points of intersection obtained from these lines $=^{15} C_2 = 105$ Now, we find the number of times, the original 6 points come. Consider one point say A_1 . Joining A_1 to remaining 5 points, we get 5 lines and any two lines from these 5 lines gives A_1 as the point of intersection. \therefore A_1 is commom in ${}^5C_2 = 10$ times out of 105 points of intersections. Similar is the case with other five points. \therefore 6 original points come 6× 10 = 60 times in points of intersection. Hence, the number of distinct points of intersection = 105 - 60 + 6 = 51

15 (b) At first we have to a accommodate those 5 animals in cages which cannot enter in 4 small cages, therefore, number of ways are ${}^{6}P_{5}$ and rest of the five animals arrange in 5! ways. Total number of ways = $5! \times {}^6 P_5$ $= 120 \times 720 = 86400$ 16 (b) $T_n = {}^nC_3 \text{ and } T_{n+1} - T_n = 21$ $\Rightarrow {}^{n+1}C_3 - {}^nC_3 = 21$ ${}^{n}C_{2} + {}^{n}C_{3} - {}^{n}C_{3} = 21$ ⇒ ${}^{n}C_{2} = 21$ ⇒ $\frac{n(n-1)}{2} = 21$ ⇒ $n^2 - n - 42 = 0$ ⇒ (n-7)(n+6) = 0 \Rightarrow n = 7 [$\because \neq -6$] *.*.. 17 (b) Total number of ways $= {}^{10}C_1 + {}^{10}C_2 + {}^{10}C_3 + {}^{10}C_4$ = 10 + 45 + 120 + 210 = 38518 (b) The total number of two factors product = ${}^{n+2}C_8$. The number of numbers from 1 to 200 which are not multiples of 5 is 160. Therefore, total number of two factors product, which are not multiple of 5, is ${}^{160}C_2$ Hence, required number of factors = ${}^{200}C_2 - {}^{160}C_2$ = 19900 - 12720= 718019 (b) Total number of *m*-elements subsetcs of $A = {}^{n}C_{m}$...(i) and number of *m*-elements subsets of *A* each containing the element $a_4 = {}^{n-1}C_{m-1}$ According to question, ${}^{n}C_{m} = \lambda$. ${}^{n-1}C_{m-1}$ $\Rightarrow \frac{n}{m} \cdot n^{-1} C_{m-1} = \lambda \cdot n^{-1} C_{m-1}$ $\Rightarrow \lambda = \frac{n}{m} \text{ or } n = m\lambda$ 20 (a) The number of 1 digit numbers = 9The number of 2 digit non-repeated numbers = $9 \times 9 = 81$ The number of 3 digit non-repeated number $= 9 \times {}^{9}P_{2} = 9 \times 9 \times 8 = 648$ \therefore Required number of ways =9+81+648=738

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	D	А	A	В	А	С	В	А	А
Q.	11	12	13	14	15	16	17	18	19	20
А.	А	С	C	В	В	В	В	В	В	А

SMARTLEARN COACHING