

Subject : CHEMISTRY DPP No. : 2 Class: XIth Date:

	Topic :- Equilibrium					
1.	A solution of FeCl ₃ in water acts as acidic due to:					
	a) Acidic impurities b) Ionisation c) Hydrolysis of Fe ³⁺ d) Dissociation					
2.	The concept that an acid is a proton donor and a base is a proton acceptor was introduced by:					
	a) Arrhenius b) Bronsted-Lowry c) Lewis d) Faraday					
3.	Which is decreasing order of strength of bases?					
	$\overline{O}H$, $\overline{N}H_2$, $HC \equiv C^-$ and $\overline{C}H_3$ $\overline{C}H_2^-$					
	a) $H_3CCH_2^- > NH_2^- > HC \equiv C^- > OH^-$ b) $HC \equiv C^- > CH_3CH_2^- > NH_2^- > OH^-$					
	c) $OH^{-} > NH_{2}^{-} > CH \equiv C^{-} > H_{3}CCH_{2}^{-}$ d) $NH_{2}^{-} > HC \equiv C^{-} > OH^{-} > H_{3}CCH_{2}^{-}$					
4.	The strength of an acid depends on its tendency to					
	a) Accept protons b) Dona <mark>te protons c) Accept el</mark> ectrons d) Donate electrons	ns				
5.	The following reactions are known to occur in the body,					
	$CO_2 + H_2O \rightleftharpoons H_2CO_3 \rightleftharpoons H^+ + \frac{HCO_3^-}{}$					
	If CO ₂ escapes from the syste <mark>m, then:</mark>					
	a) pH will decrease					
	b) Hydrogen ion concentration will diminish					
	c) H ₂ CO ₃ concentration will be unaltered					
_	d) The forward reaction will be promoted The gamman ion offset is shown by which of the following sets of solutions?					
6.	The common ion effect is shown by which of the following sets of solutions?					
7	a) $BaCl_2 + BaNO_3$ b) $NaCl + HCl$ c) $NH_4OH + NH_4Cl$ d) None of these	oota V				
7.	In the reaction, $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$, the equilibrium pressure is 12 atm. If 50% of CO_2 reacts, K_p					
	for the change is: a) 12 atm b) 16 atm c) 20 atm d) 6 atm					
8.	For a given solution $\frac{1}{9}$ = 6.9 at 60°C, where $K_w = 10^{-12}$. The solution is:					
0.	a) Acidic b) Basic c) Neutral d) Unpredictable					
9.	A quantity of PCl ₅ was heated in a 10 litre vessel at 250°C to show PCl ₅ (g) \rightleftharpoons PCl ₃ (g) + Cl ₂ (g).	At				
٥.	equilibrium the vessel contains 0.1 mole of PCl_5 , 0.20 mole of PCl_3 and 0.20 mole of Cl_2 . The					
	equilibrium constant of the reaction is:					
	a) 0.02 b) 0.05 c) 0.04 d) 0.025					
10.	One mole of ethyl alcohol was treated with one mole of acetic acid at 25°C. 2/3 of the acid chan	ges into				
	ester at equilibrium. The equilibrium constant for the reaction will be:					
	a) 1 b) 2 c) 3 d) 4					
11.	9.2 g of $N_2O_4(g)$ is taken in a closed 1 L vessel and heated till the following equilibrium is reached					
	$N_2O_4(g) \rightleftharpoons 2NO_2(g)$ At a quilibrium 50% N O (g) is dissociated. What is the equilibrium constant (in mall -1)2 (Molecular					
	At equilibrium, $50\% N_2 O_4(g)$ is dissociated. What is the equilibrium constant (in molL ⁻¹)? (Molecular weight of $N_2 O_4 = 92$)					
	weight of $N_2O_4 = 92$) a) 0.1 b) 0.2 c) 0.3 d) 0.4					
12.		Н				
14.	value?					
	(i)100 mL of 0.01 M HCl					

	(ii)100 mL of 0.01 MH ₂ S	50_4				
	(iii)50 mL of 0.01 M HCl					
	(iv)Mixture of 50 mL of 0.02 M H ₂ SO ₄ and 50 mL of 0.02 M NaOH					
	a) (i), (ii)	b) (i), (iii)	c) (ii), (iv)	d) (i), (iv)		
13.	At 3000 K, the equilibriu	m pressure of CO_2 , CO and	d O_2 are 0.6, 0.4 and 0.2 at	m respectively. K_p for the		
	reaction $2CO_2 \rightleftharpoons 2CO +$	0 ₂ , is		•		
	a) 0.089	b) 0.098	c) 0.189	d) 0.198		
14.	The pK_a of weak acid H_A is ionised:	is 4.5. The pOH of an aqu	eous buffer solution of HA	in which 50% of the acid		
	a) 7.0	b) 4.5	c) 2.5	d) 9.5		
15.		,	of H ⁺ and HX is same. The	•		
	K_a of HX is 10^{-8} , then	or in and the is sume. If	ne varae or			
	a) 3	b) 8	c) 10	d) 14		
16.	•	•	$\frac{1}{10}$ constant K_c is given by	· ·		
10.		$D \rightarrow 2C$, the equilibrium	$[c]^2$			
	a) $\frac{[3A]\times[2B]}{[C]}$	b) $\frac{[A]^3 \times [B]}{[C]}$	c) $\frac{[C]^2}{[A]^3 \times [B]^2}$	d) $\frac{[C]}{[3A][2B]}$		
17.	L 3	ected by change in pressu		[0.1][=2]		
	a) $H_2 + I_2 \rightleftharpoons 2HI$		b) $N_2 + 3H_2 \rightleftharpoons 2NH_3$			
	c) $PCl_5 \rightleftharpoons PCl_3 + Cl_2$		d) $2C + O_2 \rightleftharpoons 2CO$			
18.	Three reactions involv	ing H ₂ PO ₄ are given be	low			
	$(i)H_3PO_4 + H_2O \rightarrow H_3O^+ + H_2PO_4^-$					
(ii) $H_2PO_4^- + H_2O \rightarrow HPO_4^{2-} + H_3O^+$						
	$(iii)H_2PO_4^- + OH^- \rightarrow H_3PO_4 + O^{2-}$					
	In which of the above does H_2PO_4 act as an acid?					
	a) (ii) only	b) (i)and (ii)	c) (iii) only	d) (i) only		
19.			colysis (say CH ₃ COONa) is	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	4		eryono (oury arra ao arrun) no	B. () .		
	a) $pH = \frac{1}{2} [pK_w + pK_a + b)$ b) $pH = \frac{1}{2} [pK_w + pK_a - b]$	$\log c$				
	b) $nH = \frac{1}{nK} + nK = \frac{1}{nK}$	log cl				
	$\frac{2}{2} \operatorname{pr}_{w} + \operatorname{pr}_{a}$	logcj				
	c) pH = $\frac{1}{2}$ [p K_w + p K_b -	$\log c$				
	d) None of the above					
	u) Notice of the above					
20.	For the reactions $1 \perp R$	$\perp 0 \rightarrow C \perp D$ if the temper	aratura is increased than o	oncentration of the		
20. For the reactions, $\frac{A+B+Q}{} \rightleftharpoons C+D$, if the temperature is increased then concentration of products will						
	a) Increase	b) Decrease	c) Remains the same	d) Become zero		
	a, mercuse	Decrease	e, remains the same	a, become zero		