

**CLASS: XITH SUBJECT: PHYSICS** DATE: **DPP NO. : 2** 

| L. | When a wave traverses a medium, the displacement of a particle located at $x$ at a time $t$ is given by $y=a\sin(bt-cx)$ , where $a,b$ and $c$ are constants of the wave. Which of the following is a quantity with dimensions |                                                                  |                                                                   |                                                                     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|
|    | a) $\frac{y}{a}$                                                                                                                                                                                                               | b) <i>bt</i>                                                     | c) <i>cx</i>                                                      | d) $\frac{b}{c}$                                                    |
| 2. | Identify the pair whos a) Torque and work                                                                                                                                                                                      | e dimensions are equal<br>b) Stress and energy                   | c) Force and stress                                               | d) Force and work                                                   |
| 3. | The equation $\left(P + \frac{a}{V^2}\right)$<br>a) $Dyne \times cm^5$                                                                                                                                                         | b) $(V - b) = \text{constant. } 1$                               | The unit of $a$ is c) $Dyne \times cm^3$                          | d) Dyne $\times$ cm <sup>2</sup>                                    |
| 1. | -                                                                                                                                                                                                                              | t inductance, capacitance mensions of frequency b) $\frac{R}{L}$ | and resistance respective c) $\frac{1}{\sqrt{LC}}$                | ely, then which of the following d) $\frac{c}{L}$                   |
| 5. | If the units of mass, le<br>a) Doubled<br>c) Quadrupled                                                                                                                                                                        | ngth and time are double                                         | d, unit of angular momer<br>b) Tripled<br>d) 8 times the original |                                                                     |
| 5. | - ·                                                                                                                                                                                                                            | s <mark>uri</mark> ng the time for 100 os                        |                                                                   | of 1 mm. Its period of oscillation if 0.1 s resolution. What is the |
| 7. | Temperature can be e<br>a) Length and mass<br>c) Length, mass and ti                                                                                                                                                           | xpressed as a derived qua                                        | ntity in terms of any of b) Mass and time d) None of these        | the following                                                       |

velocity  $v_T$ . The terminal velocity depends on (i) the mass of the ball m, (ii)  $\eta$  , (iii) r and (iv) acceleration due to gravity g. Which of the following relations is dimensionally correct a)  $v_T \propto \frac{mg}{\eta r}$  b)  $v_T \propto \frac{\eta r}{mg}$  c)  $v_T \propto \eta r mg$ 

a) 
$$v_T \propto \frac{mg}{\eta r}$$

b) 
$$v_T \propto \frac{\eta r}{mg}$$

c) 
$$v_T \propto \eta r m g$$

d) 
$$v_T \propto \frac{mgr}{\eta}$$

9. The measured mass and volume of a body are 23.42 g and 4.9 cm<sup>3</sup> respectively with possible error 0.01 g

and 0.1 cm<sup>3</sup>. The maximum error in density is nearly

- a) 0.2%
- b) 2%

c) 5%

d) 10%

10. A physical quantity A is related to four observations a,b,c and d as follows,  $=\frac{a^2b^3}{c\sqrt{d}}$ . The percentage error of measurement in a,b,c and d are 1%,3%,2% and 2% respectively. What is the percentage error in the quantity A

- a) 12%
- b) 7%

c) 5%

d) 14%

11. The unit of Wien's constant b is

- a)  $Wm^{-2}K^{-4}$
- b)  $m^{-1}K^{-1}$
- c) Wm<sup>2</sup>
- d) MK

12. Young's modulus of a material has the same units as

- a) Pressure
- b) Strain
- c) Compressibility
- d) Force

13. Which of the following physical quantities has neither dimensions nor unit?

b) Luminous intensity

c) Coefficient of friction

d) Current

14. In the relation  $y = a \cos(\omega t - kx)$ , the dimensional formula for k is

- a)  $[M^0L^{-1}T^{-1}]$
- b)  $[M^0LT^{-1}]$
- c)  $[M^0L^{-1}T^0]$
- d)  $[M^0LT]$

15. The dimensional formula for the magnetic field is

- a)  $[MT^{-2}A^{-1}]$
- b)  $[ML^2T^{-1}A^{-2}]$
- c)  $[MT^{-2}A^{-2}]$
- d)  $[MT^{-1}A^{-2}]$

16.  $Dyne/cm^2$  is not a unit of

- a) Pressure
- b) Stress
- c) Strain
- d) Young's modulus

17. One side of a cubical block is measured with the help of a vernier callipers of vernier constant 0.01 cm. This side comes out to be 1.23 cm. What is the percentage error in the measurement of area?

- a)  $\frac{1.23}{0.01} \times 100$
- b)  $\frac{0.01}{1.23} \times 100$
- c)  $2 \times \frac{0.01}{1.23} \times 100$
- d)  $3 \times \frac{0.01}{1.23} \times 100$

18. Ampere – hour is a unit of

a) Quantity of electricity

b) Strength of electric current

c) Power

d) Energy

19. The velocity v (in cm/sec) of a particle is given in terms of time t(in sec) by the relation  $v = at + \frac{b}{t+c}$ ; the dimensions of a, b and c are

a)  $a = L^2$ , b = T,  $c = LT^2$ 

b)  $a = LT^2$ , b = LT, c = L

c)  $a = LT^2, b = L, c = T$ 

d)  $a = L, b = LT, c = T^2$ 

20. The potential energy of a particle varies with distance x from a fixed origin as  $U = \left(\frac{A\sqrt{X}}{x+B}\right)$ ; where A and Bare constants. The dimensions of AB are

- a)  $[ML^{5/2}T^{-2}]$
- b)  $[ML^2T^{-2}]$
- c)  $[M^{3/2}L^{3/2}T^{-2}]$  d)  $[ML^{7/2}T^{-2}]$