

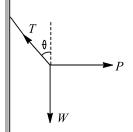
CLASS : XITH DATE:

SUBJECT : PHYSICS DPP NO. : 2

Topic :- MOTION IN A PLANE

- The angle of projection at which the horizontal range and maximum height of projectile are equal is 1. a) 45° b) $\theta = \tan^{-1}(0.25)$ d) 60°
 - c) $\theta = \tan^{-1} 4$ or $(\theta = 76^{\circ})$
- A body slides down a frictionless track which ends in a circular loop of diameter *D*. Then the minimum 2. height *h* of the body in terms of *D* so that it may just complete the loop, is

a)
$$h = \frac{5}{2}D$$
 b) $h = \frac{3}{2}D$ c) $h = \frac{5}{4}D$ d) $h = 2D$

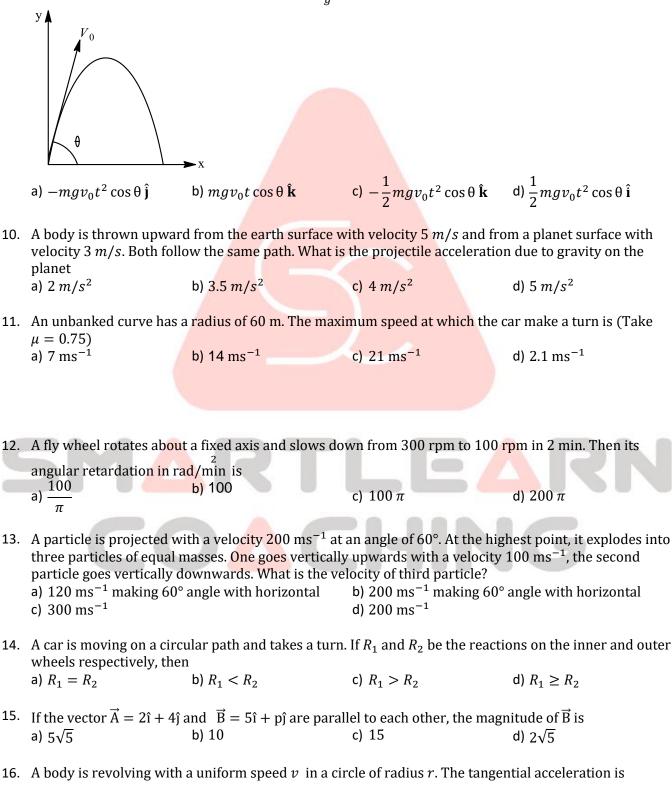

- A force $\vec{F} = 2\hat{i} + 2\hat{j}$ N displaces a particle through $\vec{S} = 2\hat{i} + 2\hat{k}$ m in 16 s. The power developed by \vec{F} is 3. a) 0.25 I s⁻¹ b) $25 | s^{-1}$ c) $225 | s^{-1}$ d) 450 J s^{-1}
- A sphere of mass *m* is tied to end of a string of length *l* and rotated through the other end along a 4. horizontal circular path with speed v. The work done in full horizontal circle is (mv^2) a) 0 (mv^2)

b)
$$\left(\frac{l}{l}\right) \cdot 2\pi l$$
 c) mg. 2π d) $\left(\frac{l}{l}\right) \cdot (l)$

Two projectile are thrown with the same initial velocity at angles α and (90° – α) with the horizontal. 5. The maximum heights attained by them are h_1 and h_2 respectively. Then $\frac{h_1}{h_2}$ is equal a) $\sin^2 \alpha$ b) $\cos^2 \alpha$ c) $\tan^2 \alpha$ d) 1

6. A particle *P* is at the origin starts with velocity $\vec{\mathbf{v}} = (2\hat{\mathbf{i}} - 4\hat{\mathbf{j}})ms^{-1}$ with constant acceleration $(3\hat{i} - 5\hat{j})$ ms⁻². After travelling for 2 s, its distance from the origin is a) 10 m b) 10.2 m c) 9.8 m d) 11.7 m

A small sphere is hung by a string fixed to a wall. The sphere is pushed away from the wall by a stick. 7. The force acting on the sphere are shown in figure. Which of the following statements is wrong?



a) $P = W tan \theta$

- 8. A particle moves in a circle of radius 30cm. Its liner speed is given by v = 2t, where t is in second and v in ms⁻¹. Find out its, radial and tangential acceleration at t = 3s, respectively, a) 220 ms⁻², 50 ms⁻² b) 100 ms⁻², 5 ms⁻² c) 120 ms⁻², 2 ms⁻² d) 110 ms⁻², 10 ms⁻²
- 9. A small particle of mass *m* is projected at an angle θ with the *x*-axis with an initial velocity v_0 in the *xy* plane as shown in the figure. At a time $t < \frac{v_0 \sin \theta}{g}$, the angular momentum of the particle is

2

SMARTLEARN	Smart DPPs		
a) $\frac{v}{r}$	b) $\frac{v^2}{r}$	c) Zero	d) $\frac{v}{r^2}$
17. A bridge is in the form of a semi-circle of radius 40 m. The greatest speed with which a motor cycle can cross the bridge without leaving the ground at the highest point is $(g = 10 \text{ms}^{-2})$ (frictional force is negligibly small)			
a) 40 ms^{-1}	b) 20 ms ⁻¹	c) 30 ms ⁻¹	d) 15 ms ⁻¹
18. A car is moving wa) Centripetal for	ith high velocity when it has a ce b) Centrifugal force	turn. A force acts on it out c) Gravitational force	twardly because of d) All the above
19. If time of flight of a projectile is 10 seconds. Range is 500 <i>meters</i> . The maximum height attained by it will be			
a) 125 m	b) 50 m	c) 100 m	d) 150 <i>m</i>
20. A stone is projected with a velocity $20\sqrt{2}ms^{-1}$ at an angle of 45° to the horizontal. The average velocity of stone during its motion from starting point to its maximum height is $(g = 10ms^{-2})$ a) $5\sqrt{5}ms^{-1}$ b) $10\sqrt{5}ms^{-1}$ c) $20ms^{-1}$ d) $20\sqrt{5}ms^{-1}$			
SMARTLEARN COACHING			