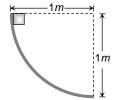


CLASS: XITH SUBJECT: PHYSICS

	DATE :			DPP NO. :2
		Topic :- WORK E	ENERGY AND POV	VER
1. N ir	An electric motor n a hoisting cable and ree a) 18 kW	els it in at the rate of b) 15 kW	2 ms ⁻¹ . The power of c) 81 W	reates a tension of 900 fthe electric motor is d) 225 W
2.	and y being in metre. Ir		<mark>le is at the or</mark> igin (0, 0) mo	is given by $U = (-7x + 24y)$ J, x oving with a velocity of $(2.4\hat{i} +$
	a) 25 units	b) 24 units	c) 7 units	d) None of these
3.	equal to the relative Statement II Inan elast a) Statement I is true, s	e speed before the collision tic collision, the linear mo tatement II is true; staten tatement II is true; staten tatement II is false	n. mentum of the system is nent II is a correct explana	ation for statement I
4.	-	_	-	er body of same mass and same ves towards north-east. Its
	a) 10 <i>m/s</i>	b) 5 <i>m/s</i>	c) 2.5 <i>m/s</i>	d) $5\sqrt{2} m/s$
5.	Two bodies of masses 2 a) 1:1	$\frac{2m}{m}$ and m have their K.E. in $\frac{2m}{m}$ b) $\frac{2}{m}$: 1	in the ratio $8:1$, then the c) $4:1$	ir ra <mark>tio of</mark> momenta is d) 8:1
6.	A spring with spring cor a) kx_1^2	instant k is extended from b) $\frac{1}{2}kx_1^2$	$x = 0$ to $x = x_1$. The wo	ork done will be d) $2kx_1$
7.	the work required to sti	retch it further by anothe	r 5 <i>cm</i> is	m the unstretched position. Ther
	a) 6.25 <i>N-m</i>	b) 12.50 <i>N-m</i>	c) 18.75 <i>N-m</i>	d) 25.00 <i>N-m</i>
8.	A uniform force of 4 N the body is	,	-	m. The kinetic energy acquired by
	a) $4 \times 2 \times 2 J$	b) $4 \times 4 \times 2 \times 10^8$ erg	c) 4 × 2 J	d) $4 \times 4 \times 2$ erg
9.	The potential energy fu	nction for the force betwe	een two atoms in a diato	mic molecule is approximately


a١	b^2	
aj	60	

b)
$$\frac{b^2}{2a}$$

c)
$$\frac{b^2}{12a}$$

d)
$$\frac{b^2}{4a}$$

10. A body of mass 2 kg slides down a curved track which is quadrant of a circle of radius 1 metre. All the surfaces are frictionless. If the body starts from rest, its speed at the bottom of the track is

- a) 4.43 m/sec
- b) 2 m/sec
- c) 0.5 *m/sec*
- d) 19.6 *m/sec*
- 11. A ball is dropped from height 20 m. If coefficient of restitution is 0.9, what will be the height attained after first bounce?
 - a) 1.62 m
- b) 16.2 m
- c) 18 m
- d) 14 m
- 12. The bodies of masses 1 kg and 5 kg are dropped gently from the top of a tower. At a point 20 cm from the ground, both the bodies will have the same
 - a) Momentum
- b) Kinetic energy
- c) Velocity
- d) Total energy
- 13. You lift a heavy book from the floor of the room and keep it in the book–shelf having a height 2 m. In this process you take 5 seconds. The work done by you will depend upon
 - a) Mass of the book and time taken
 - b) Weight of the book and height of the book-shelf
 - c) Height of the book-shelf and time taken
 - d) Mass of the book, height of the book-shelf and time taken
- 14. A sphere of mass m moving with a constant velocity u hits another stationary sphere of the same mass. If e is the coefficient of restitution, then the ratio of the velocity of two spheres after collision will be

a)
$$\frac{1-e}{1+e}$$

b)
$$\frac{1+e}{1-e}$$

c)
$$\frac{e+1}{e-1}$$

$$d)\frac{e^{-1}}{e+1}t^2$$

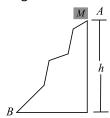
- 15. A box is moved along a straight line by a machine delivering constant power. The distance moved by the body in time t is proportional to
 - a) $1^{1/2}$
- b) $t^{3/4}$

c) $t^{3/2}$

- d) t^2
- 16. An engine pumps water continuously through a hole. Speed with which water passes through the hole nozzle is v and k is the mass per unit length of the water jet as it leaves the nozzle. Find the rate at which kinetic energy is being imparted to the water
 - a) $\frac{1}{2}kv^{2}$
- b) $\frac{1}{2}kv^{3}$
- c) $\frac{v^2}{2k}$

- d) $\frac{v^3}{2k}$
- 17. The area of the acceleration-displacement curve of a body gives
 - a) Impulse

b) Change in momentum per unit mass


c) Change in KE per unit mass

- d) Total change in energy
- 18. A car of mass 'm' is driven with acceleration ' α ' along a straight level road against a constant external resistive force 'R'. When the velocity of the car is 'V', the rate at which the engine of the car is doing work will be
 - a) *RV*

- b) maV
- c) (R + ma)V
- d) (ma R)V

SMARTLEARN COACHING

19. In the given curved road, if particle is released from A then

- a) Kinetic energy at B must be mgh
- c) Kinetic energy at B must be less than mgh
- b) Kinetic energy at B may be zero
- d) Kinetic energy at B must not be equal to zero
- 20. Two springs A and B are identical but A is harder than $B(k_A > k_B)$. Let W_A and W_B represent the work done when the springs are stretched through the same distance and W'_A and W'_B are the work done when these are stretched by equal forces, then which of the following is true
 - a) $W_{\!A}>W_{\!B}$ and $W'_{\!A}=W'_{\!B}$
- b) $W_A > W_B$ and $W'_A < W'_B$

c) $W_A > W_B$ and $W'_A > W'_B$

d) $W_A < W_B$ and $W'_A < W'_B$

