

9. A satellite is launched into a circular orbit of radius 'R' around earth while a second satellite is launched

MAHESH SIR'S NOTES - 7798364224

	T		Sma	rt DPPs
51	MARTLEARN COACHING			
into an orbit of radius 1.02 R. The percentage difference in the time periods of the two satellites is				
	a) 0.7	b) 1.0	c) 1.5	d) 3
10.	Gravitational mass is proportional to gravitational			
	a) Field	b) Force	c) Intensity	d) All of these
11.	A satellite moves round t in a circular orbit, moves a) 8 <i>R</i>	he earth in a circular orbit o round the earth ones in 8 o b) 4 <i>R</i>	of radius <i>R</i> making 1 rev/da days. The radius of the orbit c) 2 <i>R</i>	ay. A second satellite moving t of the second satellite is d) <i>R</i>
12.	The diameters of two planets are in the ratio 4:1 and their mean densities in the ratio 1:2. The acceleration due to gravity on the planets will be in ratio			
	a) 1:2	b) 2 : 3	c) 2:1	d) 4 : 1
13.	If <i>M</i> is the mass of the earth and <i>R</i> its radius, the ratio of the gravitational acceleration and the gravitational constant is			
	a) $\frac{R^2}{M}$	b) $\frac{M}{R^2}$	c) <i>MR</i> ²	d) $\frac{M}{R}$
14.	Venus looks brighter thar a) It is heavier than other c) It is closer to the earth	n other planets because r planets than other planets	b) It has higher density th d) It has no atmosphere	nan other planets
15.	There are two bodies of r (in metre) from the small a) 1/9	nasses 100,000 kg and 100 er body, the intensity of gr b) 1/10	0 kg separated by a distanc avitational field will be zerc c) 1/11	e of 1 m. At what distance o? d) 10/11
16	Force of growity is loost of			
10.	a) The equator		b) The poles	
	c) A point in between eq	uator and any pole	d) None of these	
17.	. The period of a planet around sun is 27 times that of earth. The ratio of radius of planet's orbit to the			
	a) 4	b) 9	c) 64	d) 27
18.	An object weighs 72 N on earth. Its weight at a height of $R/2$ from earth is			
	a) 32 N	b) 56 N	c) 72 <i>N</i>	d) Zero
19.	The acceleration due to gravity becomes $\left(\frac{g}{2}\right)$			
	(g = acceleration due to gravity on the surface of the earth) at a height equal to			
	a) 4 <i>R</i>	b) $\frac{\pi}{4}$	c) 2 <i>R</i>	d) $\frac{\pi}{2}$
20.	Imagine a light plant revolving around a very massive star in circular orbit of radius r with a period of revolution T . If the gravitational force of attraction between the planet and the star is proportional to $r^{-5/2}$. Then the correct relation is			
	a) $T^2 \propto r^{5/2}$	b) $T^2 \propto r^{7/2}$	c) $T \propto r^{5/2}$	d) $T^2 \propto r^{7/2}$