

r, its length L and the Young's modulus for the material of the wire is E, the extension is

- 1. directly proportional to E
- 2. inversely proportional to r

11.	 3. directly proportional to L a) If only 3 is correct b) If 1, 2 are correct c) If 2, 3 are correct d) If only 1 correct A 2 m long rod of radius 1 cm which is fixed from one end is given a twist of 0.8 radians. The shear strain developed will be 			
	a) 0.002	b) 0.004	c) 0.008	d) 0.016
12.	The upper end of a wire of radius 4 mm and length 100 cm is clamped and its other end is twisted through and angle of 30°. Then angle of shear is			
	a) 0.012°	b) 0.12°	c) 1.2°	d) 12°
13.	K is the force constant of a spring. The work done in increasing its extension from l_1 to l_2 will be			
	a) $K(l_2 - l_1)$	b) $\frac{K}{2}(l_2 + l_1)$	c) $K(l_2^2 - l_1^2)$	d) $\frac{K}{2}(l_2^2 - l_1^2)$
14.	A wire suspended vertically from one of its <mark>ends is stretch</mark> ed by attaching a weight of 200 N to the lower end. The weight stretches the wire by 1mm. Then, the elastic energy stored in the wire is			
15	a) 0.2 J Two pieces of wire <i>A and</i>	b) 10 J B of the same material ha	c) 20 J	d) 0.1 J
15.	Two pieces of wire <i>A and B</i> of the same material have their lengths in the ratio 1 : 2, and their diameters are in the ratio 2 : 1. If they are stretched by the same force, their elongations will be in the ratio			
	a) 2:1	b) 1 : 4	c) 1:8	d) 8 : 1
16.	A height spring extends 40 mm when stretched by a force of 10 N, and for tensions up to this value the extension is proportional to the stretching force. Two such springs are joined end-to-end and the double-length spring is stretched 40 mm beyond its natural length. The total strain energy in (joule), stored in the double spring is			
	a) 0.05	b) 0.10	c) 0.80	d) 0.40
17.	 Write copper, steel, glass and rubber in order of increasing coefficient of elasticity. a) Steel, rubber, copper, glass b) Rubber, copper, steel, glass 			
	c) Rubber, glass, steel, copper		d) Rubber, glass, copper, steel	
18.	The Bulk modulus for an i a) Zero	b) Unity	c) Infinity	d) Between 0 and 1
19.	Which one of the following quantities does not have the unit of force per unit area a) Stress b) Strain			
	c) Young's modulus of ela	asticity	d) Pressure	G
20.	On increasing the length by 0.5 mm in a steel wire of length 2 m and area of cross-section 2 mm^2 , the force required is [Y for steel = $2.2 \times 10^{11} N/m^2$]			
	a) $1.1 \times 10^5 N$	b) $1.1 \times 10^4 N$	c) $1.1 \times 10^3 N$	d) $1.1 \times 10^2 N$