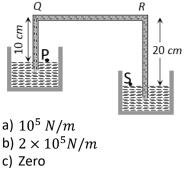


4. A liquid flows in a tube from left to right as shown in figure A_1 and A_2 are the cross-sections of the portions A_1

			$V_1 \longrightarrow V_2 \longrightarrow ($
of the tube as shown. The	n the ratio of speeds v_1/v_2	2 will be	
a) A_1/A_2	b) A_2/A_1	c) $\sqrt{A_2}/\sqrt{A_1}$	d) $\sqrt{A_1}/\sqrt{A_2}$

5. From a steel wire of density ρ is suspended a brass block of density ρ_B . The extension of steel wire comes to l. If the brass block is now fully immersed in a liquid of density ρ_L , the extension becomes l'. The ratio l/l'



will be a) $\frac{\rho_B - \rho}{\rho_L - \rho}$

b)
$$rac{
ho_L}{
ho_B-
ho_L}$$

c)
$$\frac{\rho_B - \rho_L}{\rho_B}$$
 d) $\frac{\rho_B}{\rho_B - \rho_B}$

- The excess pressure inside a spherical drop of radius r of a liquid of surface tension T is 6. a) Directly proportional to r and inversely proportional to T
 - b) Directly proportional to T and inversely proportional to r
 - c) Directly proportional to the product of T and r
 - d) Inversely proportional to the product of T and r
- A siphon in use is demonstrated in the following figure. The density of the liquid flowing in siphon is 7. 1.5 gm/cc. The pressure difference between the point P and S will be

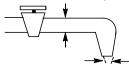
- d) Infinity
- A hole in the bottom of the tank having water. If total pressure at bottom is 3 atm (1 atm = 10^5 Nm⁻²), 8. then velocity of water flowing from hole is
 - b) $\sqrt{600} \text{ ms}^{-1}$ c) $\sqrt{60} \text{ ms}^{-1}$ a) $\sqrt{400} \text{ ms}^{-1}$ d) None of these
- A large tank filled with water to a height h is to be emptied through a small hole at the bottom. The ratio 9. of times taken for the level of water to fall from h to h/2 and h/2 to zero is

10. A block of steel of size $5 cm \times 5 cm \times 5 cm$ is weighed in water. If the relative density of steel is 7, its apparent weight is b) $4 \times 4 \times 4 \times 7 gf$ c) $5 \times 5 \times 5 \times 7 gf$ d) $4 \times 4 \times 4 \times 6 gf$ gf

a)
$$6 \times 5 \times 5 \times 5$$

- 11. There are two holes one each along the opposite sides of a wide rectangular tank. The cross-section of each hole is 0.01m^2 and the vertical distance between the holes is one meter. The tank is filled with water flows out of the holes is (density of water = 1000 kgm^{-3}) a) 100 b) 200 d) 400 c) 300
- 12. Water in river 20 m deep is flowing at a speed of 10 ms^{-1} . The shearing stress between the horizontal layers of water in the river in N m^{-2} is (coefficient of viscosity of water = 10^{-3} SI units) a) 1×10^{-2} Nm⁻² b) 0.5×10^{-2} Nm⁻² c) 1×10^{-3} Nm⁻² d) $0.5 \times 10^{-3} \text{ Nm}^{-2}$
- 13. Ice pieces are floating in beaker A containing water also in a beaker B containing miscible liquid of specific gravity 1.2. When ice melts, the level of a) water increases in A b) water decreases in A

2



c) liquid in *B* decreases

- d) liquid in B increases
- 14. On the surface of the liquid in equilibrium, molecules of the liquid possess
 - a) maximum potential energy

- b) maximum potential energy
- c) maximum kinetic energy
- d) minimum kinetic energy
- 15. Water flowing out of the mouth of a tap and falling vertically in streamline flow forms a tapering column, *ie* the area of cross-section of the liquid column decreases as it moves down. Which of the following is the most accurate explanation for this?

- a) Falling water tries to reach a terminal velocity and hence, reduces the area of cross-section to balance upward and downward forces
- b) As the water moves down, its speed increases and hence, its pressure decreases. It is then compressed by atmosphere
- c) The surface tension causes the exposed surface area of the liquid to decrease continuously The mass of water flowing out per second through any cross-section must remain constant. As the water
- d) is almost incompressible, so the volume of water flowing out per second must remain constant. As this is equal to velocity × area, the area decreases as velocity increases
- 16. Speed of 2 cm radius ball in a viscous liquid is 20 cms⁻¹. Then the speed of 1 cm radius ball in the same liquid is

a) 5 cms^{-1} b) 10 cms^{-1} c) 40 cms^{-1} d) 80 cms^{-1}

17. The fraction of a floating object of volume V_0 and density d_0 above the surface of a liquid of density d will be

a)
$$\frac{d_0}{d}$$
 b) $\frac{dd_0}{d+d_0}$ c) $\frac{d-d_0}{d}$ d) $\frac{dd_0}{d-d_0}$

18. A piece of ice is floating in a jar containing water. When the ice melts, then the level of water
a) rises
b) Falls
c) remains unchanged
d) rises or falls

A cork is submerged in water by a spring attached to the bottom of a bowl. When the bowl is kept in an elevator moving with acceleration downwards, the length of spring

 a) Increases
 b) Decreases
 c) Remains unchanged
 d) None of these

- 20. A body of density d_1 is counterpoised by Mg of weights of density d_2 in air of density d. Then the true mass of the body is
 - a) M b) $M\left(1-\frac{d}{d_2}\right)$ c) $M\left(1-\frac{d}{d_1}\right)$ d) $\frac{M(1-d/d_2)}{(1-d/d_1)}$