

1

Smart DPPs

11. Let α , β be the roots of $x^2 + bx + 1 = 0$. Then the equation whose roots are $-\left(\alpha + \frac{1}{\beta}\right)$ and $-\left(\beta + \frac{1}{\alpha}\right)$,			
is a) $x^2 = 0$	b) $x^2 + 2b + 4 = 0$	c) $x^2 - 2 b x + 4 = 0$	d) $x^2 - b x + 1 = 0$
12. The vector $z = -4 + 5i$ is turned counterclockwise through an angle of 180° and stretched $1\frac{1}{2}$ times. The complex number corresponding to newly obtained vector is			
-		c) $6 + \frac{15}{2}i$	d) None of these
13. If $(3 - i)z = (3 - i)\overline{z}$, then the complex number <i>z</i> is			
a) $a(3-i), a \in R$	b) $\frac{a}{(3+i)}$, $a \in R$	c) $a(3+i), a \in R$	d) $a(-3+i), a \in R$
14. For real values of x, the expression $\frac{(x-b)(x-c)}{(x-a)}$ will assume all real values provided			
a) $a \le c \le b$	b) $b \ge a \ge c$	c) $b \leq c \leq a$	d) $a \ge b \ge c$
	r of $x^4 + ax^3 + bx^2 + cx$ b) $x + 1$		r is d) $x - 1$
16. The centre of a square is at the ori <mark>gin and $1 + i$ is one of its vert</mark> ices. The extremities of its diagonals which does not pass through this vertex are			
	b) 1 – <i>i</i> , –1 – <i>i</i>	c) $-1 + i$, $-1 - i$	d) None of these
17. If $p(x) = ax^2 + bx + c$ and $Q(x) = -ax^2 + dx + c$, where $ac \neq 0$, then $P(x)Q(x) = 0$ has at least			
a) Four real roots c) Four imaginary re	oots	b) Two real roots d) None of these	
ey i our imaginary i		aj none or these	
18. If $a = \cos \theta + i \sin \theta$, then $\frac{1+a}{1-a}$ is equal to			
a) $\cot \frac{\theta}{2}$	b) cot θ	c) $i \cot \frac{\theta}{2}$	d) $i \tan \frac{\theta}{2}$
19. If $x^2 + 2ax + b \ge c$, $\forall x \in R$, then			
a) $a - c \ge a^2$	b) $c - a \ge b^2$	c) $a-b \ge c^2$	d) None of these
20. Let A, B, C be three collinear points which are such that AB . $AC = 1$ and the points are represented in the Argand plane by the complex numbers 0, z_1 and z_2 respectively, Then,			
the Argand plane by the a) $z_1 z_2 = 1$	complex numbers 0, z_1 arb b) $z_1 \overline{z}_2 = 1$	1d z_2 respectively, Then, c) $ z_1 z_2 = 1$	d) None of these