

11. The coefficient of *y* in the expansion of $(y^2 + c/y)^5$, is

SI			Sma	rt DPPs
12.	CO▲CHING a) 29 <i>c</i> The value of (0.99) ¹⁵ is	b) 10 <i>c</i>	c) 10 <i>c</i> ³	d) 20 <i>c</i> ²
	a) 0.8432	b) 0.8601	c) 0.8502	d) None of these
13.	The sum of the coefficient expansion is	the expansion of (x)	$(+ y)^n$ is 4096. The greates	st coefficient in the
	a) 1024	b) 924	c) 824	d) 724
14.	If in the expansion of $(1 + x)^n$, the coefficient of <i>r</i> th and $(r + 2)$ th term be equal, then <i>r</i> is equal to			
	a) 2 <i>n</i>	b) $\frac{2n+1}{2}$	c) $\frac{n}{2}$	d) $\frac{2n-1}{2}$
15.	If the second, third and fourth term in the expansion of $(x + a)^n$ are 240,720 and 1080			
	respectively, then the value of <i>n</i> is			
	a) 15	b) 20	c) 10	d) 5
16.	The value of $\frac{1}{81^n} - \frac{10}{81^n} 2^n$	$C_1 \frac{10^2}{81^n} {}^{2n}C_2 - \frac{10^3}{81^n} 2 {}^{2n}C_3 +$	$\dots + \frac{10^{2n}}{81^n}$ is	
	a) 2	b) 0	c) $\frac{1}{2}$	d) 1
17.	If $(1 + x + x^2)^n = \sum_{r=0}^{2n} x^{r-1}$	a _r x ^r	2	
	then, $a_1 - 2a_2 + 3a_3 \dots$	$-2na_{2n}$ is equal to		
18.	a) <i>n</i> The coefficient of the mi	b) $-n$ ddle term in the expansio	c) 0 n of $(1 + x)^{2n}$, is	d) 2 <i>n</i>
	a) $\frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{n!} 2^n$	b) $\frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{(n!)^2} 2^n$	c) $\frac{(2 n)!}{(n !)^2} 2^{2n}$	d) None of these
19.	The constant term in the	e expansion of $(1 + x)^{10}$	$(1+\frac{1}{r})^{12}$ is	
	a) ${}^{22}C_{10}$	b) 0 R T	c) $^{22}C_{11}$	d) None of these
20.	20. If $a_1 = 1$ and $a_n = na_{n-1}$ for all positive integer $n \ge 2$, then a_5 is equal to			
	a) 125	b) 120	c) 100	d) 24