

DPP DAILY PRACTICE PROBLEMS

CLASS : XIth DATE :

SUBJECT : MATHS DPP NO. : 2

1. repi	The equation $ax^2 + 2h$ resents a rectangular hy a) $\Delta \neq 0, h^2 > ab, a + b$ b) $\Delta \neq 0, h^2 < ab, a + b$ c) $\Delta \neq 0, h^2 = ab, a + b$ d) None of these	$ \begin{array}{c} \text{Topic:}\\ T$	- CONIC SECTION	f + 2 gx + 2 fy + c = 0
2. ellip <i>A, M</i>	The line passing throug $x^2 + 9y^2 = 9$ meets <i>I</i> and the origin <i>O</i> is $x^{2} + 9y^{2} = 9$	gh the extremity A of the its auxiliary circle at the	major axis and extremi point <i>M</i> . Then, the area	ty <i>B</i> of the minor axis of the of the triangle with vertices at $dtriangle^{\frac{27}{2}}$
	a) $\frac{1}{10}$	$0)\frac{10}{10}$	$() \frac{1}{10}$	$(1)\frac{1}{10}$
3. two	From the point $(-1, -6)$ two tangents are drawn to the parabola $y^2 = 4x$. Then, the angle between tangents is			
	a) 30°	b) 45°	c) 60°	d) 90°
4.	The centre of the ellips a) $(-2, -1)$	e $4x^2 + 9y^2 + 16x - 18$ b) (-2,1)	y - 11 = 0 is c) (2, -1)	d) None of these
5. exte	The circle whose equation are $x^2 + y^2 + c^2 = 2ax$ and $x^2 + y^2 + c^2 - 2by = 0$ will touch one and ernally if			
	a) $\frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{a^2}$	b) $\frac{1}{c^2} + \frac{1}{a^2} = \frac{1}{b^2}$	c) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}$	d) None of these
6. leng	In an ellipse the distand	c <mark>e b</mark> etween the foci is 8 a	and the distance betwee	n the directrices is 25. The
	a) 10√2	b) 20√2	c) 30√2	d) None of these
7. by 9	If $lx + my + n = 0$ repr 00° , then a) $a^{2}l^{2} + b^{2}m^{2} = n^{2}$ c) $a^{2}l^{2} + b^{2}m^{2} = 2n^{2}$	resents a chord of the el	lipse $b^2 x^2 + a^2 y^2 = a^2 b^2$ b) $\frac{a^2}{l^2} + \frac{b^2}{m^2} = \frac{(a^2 - b^2)^2}{n^2}$ d) None of these	b ² whose eccentric angles differ
8. If the latusrectum of a hyperbola forms an equilateral triangle with the vertex at the centre of the hyperbola then the eccentricity of the hyperbola is				
тур	a) $\frac{\sqrt{5}+1}{2}$	b) $\frac{\sqrt{11}+1}{2}$	c) $\frac{\sqrt{13}+1}{2\sqrt{3}}$	d) $\frac{\sqrt{13}-1}{2\sqrt{3}}$
_				

9. The eccentricity of the conic $4x^2 + 16y^2 - 24x - 32y = 1$ is a) $\frac{1}{2}$ b) $\sqrt{3}$ c) $\frac{\sqrt{3}}{2}$

d) $\frac{\sqrt{3}}{4}$

a) 1

- 10. If the chords of contact of tangents from two points (x_1, y_1) and (x_2, y_2) to the hyperbola $4x^2 9y^2 36 = 0$ are at right angles, then $\frac{x_1x_2}{y_2y_2}$ is equal to
 - c) $\frac{81}{16}$ a) $\frac{9}{4}$ d) $-\frac{81}{16}$

The equation of a circle which cuts the three circles 11. $x^{2} + y^{2} - 2x - 6y + 14 = 0$ $x^{2} + y^{2} - x - 4y + 8 = 0$ $x^{2} + y^{2} + 2x - 6y + 9 = 0$ orthogonally, is a) $x^2 + y^2 - 2x - 4y + 1 = 0$ b) $x^2 + y^2 + 2x + 4y + 1 = 0$ c) $x^2 + y^2 - 2x + 4y + 1 = 0$ d) $x^2 + y^2 - 2x - 4y - 1 = 0$ 12. The length of the common chord of the ellipse $\frac{(x-1)^2}{9} + \frac{(y-2)^2}{4} = 1$ and the circle $(x-1)^2 + (y-2)^2 =$ 1 is b) $\sqrt{3}$ a) 2 c) 4 d) None of these 13. The mirror image of the directrix of the parabola $y^2 = 4(x + 1)$ in the line mirror x + 2y = 3, is a) x = -2b) 4y - 3x = 16c) x - 3y = 0d) x + y = 014. The line $x = at^2$ meets the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in the real points, if b) $|t| \leq 1$ a) |t| < 2c) |t| > 1d) None of these 15. The length of the latusrectum of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$, is a) $\frac{2a^2}{b}$ b) $\frac{2b^2}{a}$ c) $\frac{b^2}{a}$ d) $\frac{a^2}{1}$ 16. The condition that the chord $x \cos \alpha = 0 + y \sin \alpha - p = 0$ of $x^2 + y^2 - a^2 = 0$ may subtend a right angle at the centre of the circle is a) $a^2 = 2p^2$ b) $p^2 = 2a^2$ c) a = 2p d) p = 2a17. Given that circle $x^2 + y^2 - 2x + 6y + 6 = 0$ and $x^2 + y^2 - 5x + 6y + 15 = 0$ touch, the equation to their common tangent is c) 7x - 12y - 21 = 0 d) 7x + 12y + 21 = 0a) x = 3b) y = 618. The number of common tangents of the circles $x^2 + y^2 - 2x - 1 = 0$ and $x^2 + y^2 - 2y - 7 = 0$ is a) 1 b) 2 c) 3 d) 4

19. A ray of light incident at the point (-2, -1) gets reflected from the tangent at (0, -1) to the circle x^2 + $y^2 = 1$. The reflected ray touches the circle. The equation of the line along which the incident ray moved is b) 4x + 3y + 11 = 0 c) 3x + 4y + 11 = 0a) 4x - 3y + 11 = 0d) None of these

20. If the points *A*(2,5) and *B* are symmetrical about the tangent to the circle $x^2 + y^2 - 4x + 4y = 0$ at the origin, then the coordinates of *B* are

c) (5,2) d) None of these a) (5, -2)b) (1,5)

b) 2

555 SMARTLEARN COACHING