

Class : XIth
Date : Subject : MATHS
DPP No. : 2

Topic:- statistics					
1.	The weighted mean of	f first n	nati	ural numbers whose weights are	
equ	ual is given by				
	a) $\frac{n+1}{2}$	b) $\frac{2n+1}{2}$	c) $\frac{2n+1}{3}$	d) $\frac{(2 n+1)(n+1)}{6}$	
2.	4	rst <i>n</i> natural numbers is	3	6	
	a) $\left(\frac{n^2-1}{12}\right)$	b) $\frac{n(n^2-1)}{12}$	c) $\left(\frac{n^2+1}{12}\right)$	d) $\frac{n(n^2+1)}{12}$	
Following are the marks obtained by 9 students in Mathematics test: 50,69,20,33,53,39,40,65,59					
The mean deviation from the median is					
	a) 9	b) 10.5	c) 12.67	d) 14.76	
4.	4. If the median of $\frac{x}{2}$, $\frac{x}{3}$, $\frac{x}{4}$, $\frac{x}{5}$, $\frac{x}{6}$ (where $x > 0$) is 6, then $x = 0$				
	a) 6	b) 18	c) 12	d) 24	
5. Coefficient of skewness for the values					
Me	dian = 18.8 , $Q_1 = 14.6$,	$Q_3 = 25.2 \text{ is}$			
	a) 0.2	b) 0.5	c) 0.7	d) None of these	
6.	The arithmetic mean	of the squares of first n r	2 .		
	a) $\frac{n+1}{6}$	b) $\frac{(n+1)(2n+1)}{6}$	c) $\frac{n^2-1}{6}$	d) None of these	
7. If G_1 , G_2 are the geometric means of two series of observations and G is the GM of the ratios of the					
corresponding observations then <i>G</i> is equal to					
	a) $\frac{G_1}{G_2}$	b) $\log G_1 - \log G_2$	c) $\frac{\log G_1}{\log G_2}$	d) $\log(G_1 \cdot G_2)$	
8.	The coefficient of correlation (r) and the two regression coefficients b_{yx} , b_{xy} are related as				
	a) $r = \frac{b_{xy}}{b_{yx}}$		b) $r = b_{xy} \times b_{yx}$		
	c) $r = b_{xy} + b_{yx}$		d) $r = (\operatorname{sign} b_{vx}) \sqrt{b_x}$	h	
		haarvationa with maan	, , , , , , , , , , , , , , , , , , ,		
9. Let a, b, c, d, e be the observations with mean m and standard deviation σ . The standard deviation of the observations $a + k, b + k, c + k, d + k, e + k$, is					
uie	a) σ	b) $k \sigma$	c) $k + \sigma$	d) σ/k	
10					
10. If the S.D. of a variable X is σ , then the S.D. of $\frac{aX+b}{c}(a,b,c)$ are constant), is					
	a) $\frac{a}{c}\sigma$	b) $\left \frac{a}{c}\right \sigma$	c) $\left \frac{c}{a}\right \sigma$	d) $\frac{c}{a}\sigma$	
11.	The mean of the series	s $x_1, x_2,, x_n$ is \overline{X} . If x_2 is	s replaced by λ , then the	new mean is	
	a) $\overline{X} - x_2 + \lambda$		c) $\frac{(n-1)\overline{X}+\lambda}{n}$		
12. If σ is the standard deviation of a random variable x , then the standard deviation of the					
random variable $ax + b$, where $a, b \in R$ is					
	a) $a\sigma + b$	b) $ a \sigma$	c) $ a \sigma + b$	d) $a^2\sigma$	
13.	If the mean of a set of	observations x_1, x_2, x_1	$_{0}$ is 20, then the mean of	$fx_1 + 4, x_2 + 8, \dots x_{10} + 40$ is	
	a) 34	b) 38	c) 40	d) 42	
14.	Which one of the follo	_			
	a) Quartile derivation is one half of the sum of the upper and lower quartiles				

- b) For finding median, the items of the series are arranged in ascending or descending order of magnitude
 - c) Mean, mode, median have not same unit
 - d) SD can be computed from any average
- 15. The mean deviation from mean of the observation a, a + d, a + 2d, ... a + 2nd is

a)
$$\frac{n(n+1)d^2}{3}$$

b)
$$\frac{n(n+1)}{2}d^2$$

c)
$$a + \frac{n(n+1)d^2}{2}$$

d) None of these

16. If the variance of 1, 2, 3, 4, 5, ..., 10 is $\frac{99}{12}$, then the standard derivation of 3, 6, 9, 12, ..., 30 is

a)
$$\frac{297}{4}$$

b)
$$\frac{3}{2}\sqrt{33}$$

c)
$$\frac{3}{2}\sqrt{99}$$

d)
$$\sqrt{\frac{99}{12}}$$

17. Consider first 10 positive integers having standard deviation 2.87. If we multiply each number by -1and then add 1 to each number, the standard deviation of the numbers so obtained is

c)
$$-2.87$$

d)
$$-8.25$$

18. If SD of *X* is *s*, then SD of the variable $\mu = \frac{aX+b}{c}$, where *a*, *b*, *c* are constants, is

a)
$$\left| \frac{c}{a} \right| \sigma$$

b)
$$\left| \frac{a}{c} \right| \sigma$$

c)
$$\left| \frac{b}{c} \right| \sigma$$

d)
$$\left| \frac{c^2}{a^2} \right| \sigma$$

a) $\left|\frac{c}{a}\right| \sigma$ b) $\left|\frac{a}{c}\right| \sigma$ c) $\left|\frac{b}{c}\right| \sigma$ 19. The S.D. of the series a, a+d, a+2d, ..., a+2nd, is

a)
$$\frac{n(n+1)}{3}d^2$$

b)
$$\sqrt{\frac{n(n+1)}{3}} d$$

c)
$$\frac{n(n-1)}{3}d^2$$

d)
$$\sqrt{\frac{n(n-1)}{3}} d$$

- 20. In a moderately skewed distribution the values of mean and median are 5 and 6 respectively. The value of mode in such a situation is approximately equal to
 - a) 8

b) 11

c) 16

d) None of these

ARTLEA COACHING