

1

Smart DPPs

COACHING weight of Fe_{III} $\times 8$ weight of oxygen 56 weight of Fe_{III} $\times 8$... (ii) = -----3 x From Eq. (1) -weight of Fe_{II} = $\frac{3}{2}$ From Eq. (i) and (ii), 7 (a) We know that protons in 1 mole $CaCO_3$ = atomic number of calcium + atomic number of carbon + 3 (atomic number of oxygen) = 20 + 6 + 3(8) = 50 mol:. Proton in 10 g CaCO₃ = $\frac{10 \times 50}{100} \times 6.02 \times 10^{23}$ $= 3.01 \times 10^{24}$ 8 (b) $MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + cl_2$ 2 mol 4 mol 1 mol 4 mol 22.4 L But the yield is 11.2. :. % yield = $\frac{11.2}{22.4} \times 100 = 50\%$ 9 (b) $N = \frac{1}{49 \times (100/1000)} = 0.2$ 10 (c) One mole of electrons = 6.023×10^{23} electrons Mass of one electron= 9.1×10^{-28} g Mass of one mole of electrons $= 6.023 \times 10^{23} \times 9.1 \times 10^{-28}$ g $= 5.48 \times 10^{-4} \text{g} = 0.548 \text{ mg}$ $\approx 0.55 \text{ mg}$ 11 (c) Eq. of metal = Eq. of Cl $\frac{74.4 - 35.5}{E} = \frac{35.5}{35.5}$ ÷ Ŀ E = 38.912 (a) Equivalent wt of acid molecular weight of acid no. of H atoms replaced during reaction .. Equivalent weight of acid depends on the reaction involved because different number of acids are replaced during different reactions. 14 (d) At. wt. = 2 × 31.82 $\therefore \text{Wt. of one atom} = \frac{2 \times 31.82}{N} = \frac{63.64}{N}$ (a) 15 22.4 litre = 1 mole: $\therefore 1m^3 = 10^3$ litre $= \frac{10^3}{22.4} = 44.6$ 16 (c) $2\text{KClO}_3 \rightarrow 2\text{KCl} + 3\text{O}_2 \uparrow;$ 245 g KClO₃ on heating shows a wt. loss = 96 g (of O_2) \therefore 100 g KClO₃ on heating shows a wt. loss

SMARTLEARN

Smart DPPs

 $=\frac{96\times100}{245}$ g = 39.18%

(b) 17 Meq. = Normality \times *V* in mL $=500 \times 0.2 = 100$ 18 (a) Number of molecules = $\frac{mass \times N_A}{molar mass}$ (d) 19

- $3F^- \equiv 1$ Formula unit (AlF₃) $3.0 \times 10^{24}F^- = 1 \times 10^{24}$ Formula units (AlF₃) (d)
- 20

One mole of CO₂ contains 6.02×10^{23} atoms of carbon and 6.023×10^{23} molecules of oxygen.

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	С	D	Α	D	D	Α	А	В	В	С
А										
Q.	11	12	13	14	15	16	17	18	19	20
А.	C	А	В	D	A	C	В	A	D	D

RTLEA SMCOACHING