

CLASS: XIIth

**DATE:** 

1

**SOLUTIONS** 

**SUBJECT: CHEMISTRY** 

**DPP NO. : 2** 

Topic:-organic chemistry - some basic principles and techniques

(b)

Such dehydrohalogenation follow  $E_2$  mechanism. The driving force of such reaction is the stability of alkene produced. Since, tertiary alkyl halide can give more substituted alkene, it reacts fastest followed by secondary and primary i.e.,  $3^{\circ} > 2^{\circ} > 1^{\circ}$ .

2 (c

Central carbon atom is chiral carbon.

3 (d)

Those organic compounds, which are volatile in steam are purified by steam distillation. Since, aniline is a steam volatile compound, hence it is purified by steam distillation.

4 **(b)** 

Maleic acid

Fumaric acid

are geometrical isomers.

5 **(b**)

 $C_6H_5O^-$  possess less nucleophilicity due to stabilized nature of phenoxide ion.  $CH_3OH$  is weaker acid than  $CH_3COOH$  and thus  $CH_3O^-$  is stronger base.

Acidic order:  $CH_3COOH > H_2O > CH_3OH$ 

6 **(c)** 

Vinyl chloride is least reactive for S<sub>N</sub> reaction due to resonance

$$CH_2$$
=CH $CH_2$ -CH= $CH_2$ 

9 **(b**)

The chain propagation step involves the use of free radical and regeneration of another free radical.

10 (b

CH<sub>3</sub>NC is methaneisonitrile.

12 **(a** 

Benzyl carbonium is more stable due to resonance and thus, benzyl chloride is more reactive.

13 **(a)** 

It is a fact.

14 **(b**)

 $C_n H_{2n} O_2$  is general formula for open chain acid and ester.

$$n=3 \ C_3H_6O_2$$

$$\begin{array}{c} 0\\ \parallel\\ \text{Acid} \quad \text{CH}_3\text{CH}_2-\text{C}-\text{O}-\text{H}\\ 0\\ \parallel\\ \text{Easter CH}_3-\text{C}-\text{O}-\text{CH}_3 \end{array}$$

The Cannizzaro reaction is as

$$HCHO + HCHO \xrightarrow{KOH(conc.)} CH_3OH + HCOOK^+$$
 $methyl alcohol acetic acid$ 

The mechanism of Cannizzaro reaction is as

**Step I** Attack of nucleophile OH<sup>-</sup> to the carbonyl carbon

Step II The transfer of hydride ion from anion (I) to second molecule of aldehyde and finally rapid transfer of proton takes place.

$$\begin{array}{c|c} OH & O^{(-)} \\ \hline \\ H & C \\ \hline \\ H \\ alcohol \end{array} H \xrightarrow{Proton \ exchange \ fast} H \xrightarrow{O^{(-)} \\ \hline \\ H \\ alcohol \end{array} H +$$

17

Propanal and propanone are functional isomers

18

(a)

It is a fact.

Angle strain, 
$$\alpha = \frac{1}{2}[109^{\circ}28' - \theta]$$

In case of cyclopropane,

$$\theta=60^\circ$$

$$\therefore \alpha = \frac{1}{2}(109^{\circ}28' - 60^{\circ}) = 24^{\circ}44'$$

The function of AlCl<sub>3</sub>, in Friedel-Craft reaction, is to produce electrophile, which later add to benzene nucleus

$$CH_{3}-CH_{2}-CH_{2}CI+AlCl_{3}\longrightarrow \\ CH_{3}-CH_{2}-\overset{+}{C}H_{2}+AlCl_{4}^{-}$$

$$CH_{3}-CH-CH_{3}$$

$$(more stable)$$

$$CH_{3}-CH-CH_{3}$$

$$CH_{3}-CH-CH_{3}$$

| ANSWER-KEY |    |    |    |    |    |    |    |    |    |    |
|------------|----|----|----|----|----|----|----|----|----|----|
| Q.         | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| Α.         | В  | С  | D  | В  | В  | C  | A  | A  | В  | В  |
|            |    |    |    |    |    |    |    |    |    |    |
| Q.         | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A.         |    |    |    |    |    |    |    |    |    |    |
|            |    |    |    | 1  |    |    |    |    |    |    |

## COACHING