

$$\begin{vmatrix} \frac{Ag}{g} \end{vmatrix}_{\max} \times 100 = \left(\frac{0.1}{100} \times 100\right) + \left(\frac{2 \times 0.001}{2} \times 100\right) \\= 0.1\% + 0.1\% + 0.1\% = 0.2\% \\ (d) \\Because temperature is a fundamental quantity (a) \\By submitting dimension of each quantity in R.H.S. of option (a) we get $\left[\frac{mg}{m}\right] = \left[\frac{M \times LT^{-2}}{ML^{-1}T^{-1} \times L}\right] = [LT^{-1}]$
This option gives the dimension of velocity (b)
Percentage error in mass $= \frac{0.01}{2.342} \times 100 = 0.04$
Percentage error in volume $= \frac{3}{4.9} \times 100 = 2.04$
Adding up the percentage errors, we get nearly 2%. (d)
Percentage error in A $= \left(2 \times 1 + 3 \times 3 + 1 \times 2 + \frac{1}{2} \times 2\right)\% = 14\%$
(d)
According to Wien's law the product of wavelength corresponding to maximum intensity of radiation and temperature of body (in Kelvin) is constant $ie, \lambda_m T = b = \text{constant}$, where b is Wien's constant and has value $2.89 \times 10^{-3} \text{ m} - \text{K}$.
(a)
 $Y = \frac{\text{Stress}}{\text{Strain}} = \frac{\text{Force}/\text{Area}}{\text{Dimension of wt}} \Rightarrow Y = \text{Pressure}$
(c)
Coefficient of riction = $\frac{\text{Applied force}}{\text{Normal reactions}}} \Rightarrow Y = \text{Pressure}$
(d)
 $\text{Magnetic field} = \frac{\text{Force}}{(\text{ILT}^{-1}]} = [MA^{-1}T^{-1}]$
(a)
 $\text{Magnetic field} = \frac{\text{Force}}{(\text{ILT}^{-1}]} = [MA^{-1}T^{-2}]$$$

(c) Percentage error in measurement of a side $= \frac{0.01}{1.23} \times 100$ Percentage error in measurement of area $= 2 \times \frac{0.01}{1.23} \times 100$ (a)

(d)

 $Charge = current \times time$

19

(c) From the principle of dimensional homogenity $[v] = [at] \Rightarrow [a] = [LT^{-2}]$. Similarly [b] = [L] and [c] = [T]

20

Given, $U = \frac{A\sqrt{x}}{x+B}$... (i) Dimensions of U = dimensions of potential energy $= [ML^2T^{-2}]$ From Eq. (i), Dimensions of B = dimensions of $x = [M^0LT^0]$ \therefore Dimensions of A $= \frac{\text{dimensions of } U \times \text{dimensions of } (x + B)}{\text{dimension of } \sqrt{x}}$ $= \frac{[ML^2T^{-2}][M^0LT^0]}{[M^0L^{1/2}T^0]}$ $= [ML^{5/2}T^{-2}]$ Hence, dimensions of AB $= [ML^{5/2}T^{-2}][M^0LT^0]$ $= [ML^{7/2}T^{-2}]$

		ANSWER-KEY								
Q.	1	2	3	4	5	6	7	8	9	10
Α.	D	Α	В	D	С	Α	D	Α	В	D
	6									÷
Q.	11	12	13	14	15	16	17	18	19	20
Α.	D	А	С	С	Α	C	С	А	С	D