

CLASS : XIth DATE :

Solutions

SUBJECT : MATHS DPP NO. :2

Topic :-MATHEMATICAL REASONING

	Topic :-MATHEMATICAL REASONING
2	
	$(\sim p \land q) \land \sim q = \sim p \land (q \land \sim q) = \sim p \land c = c$
3	(c)
4	$p \wedge q$ means Mathematics is interesting and Mathematics is difficult
4	(a) Truth Table
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$(\sim p \lor q)$
	T T F F F T T
	T T F F T T T T
	T F T F F F F T
	T F F F T T F F F T T F F T T
	F F F T T F T T
	Hence, $(p \land \sim r) \rightarrow (\sim p \lor q)$ is F.
	When $p = T$, $q = F$, $r = F$
6	(a)
	By truth table
	$ \begin{vmatrix} p & q & p \\ & \lor q \end{vmatrix} \sim \begin{pmatrix} p & \\ & \lor q \end{vmatrix} \sim \begin{pmatrix} p & \\ & \lor q \end{pmatrix} \lor $
	T F T F T
	F T T T T
7	It is clear that $(p \lor q) \lor \sim p$ is a tautology
7	(a) Let <i>p</i> : Two triangles are identical
	<i>q</i> : Two triangles are similar
	Clearly, the given statement in symbolic form is $p \rightarrow q$.
	\therefore Its contrapositive is given by $\sim q \rightarrow \sim p$.
	<i>ie</i> , If two triangles are not similar, then these are not identical.
8	(a)
0	$(p \lor q) \land (p \lor r) = p \lor (q \land r)$
9	(c)
	Truth table

p	q	~ p	$\sim q$	$\sim q$	(~ q	(<i>p</i>	(~ q	(~ <i>q</i>
				$\wedge p$	$\land p)$	٨	$\wedge p)$	$\wedge p)$
					$\wedge q$	$\sim p)$	V (p	V (p
							Λ	Λ
							~ <i>p</i>)	~ <i>p</i>)
Т	Т	F	F	F	F	Т	F	Т
Т	F	F	Т	Т	F	Т	F	Т
F	Т	Т	F	F	F	Т	F	Т
F	F	Т	Т	F	F	Т	F	Т

It is clear from the table that last column have all true values. Hence option (c) is correct **(b)**

10

Let p = 2 is prime and q = 3 is odd Given, $p \rightarrow q$ Negation of $p \rightarrow q$ is $\sim (p \rightarrow q)$ $\Rightarrow p \land \sim q$ $\Rightarrow 2$ is prime and 3 is not odd.

11

(a)

~/						1 A A	
p	q	r	$\sim p$	$\sim q$	$\sim p$	(~ p	(~ <i>p</i>
					$\vee q$	V q)	$\vee q)$
						$\wedge \sim q$	$\wedge \sim q$
						16	$\rightarrow p$
Т	F	Т	F	Т	F	F	Т
(a)							

12

Since, switches *a* and *b* and *a'*, *b'* and *c'* are parallel which is denoted by $a \wedge b$ and $a' \wedge b' \wedge c'$ respectively

Now, $(a \land b)$, c and $(a' \land b' \land c')$ are connected in series, then switching function of complete network is

 $(a \wedge b) \vee c \vee (a' \wedge b' \wedge c')$

13 **(b)**

The negation of $q \lor \sim (p \land r)$ is given by $\sim \{q \lor \sim (p \land r)\} \cong \sim q \land (p \land r)$

15 (d)

 $(\sim p \land q) \lor \sim q \equiv \sim q \lor (\sim p \land q)$ (By Commutative law) $\equiv \sim q \lor (q \land q \sim p)$ (By Commutative law) $\equiv \sim q \lor q(\sim q \lor \sim p)$ (By Distributive law) $\equiv \sim (q \land p)$ $\equiv \sim (p \land q)$

16

p	q	<i>p</i> ∧ <i>q</i>	~ <i>p</i>	$\sim p$ $\lor q$	$(p) \\ \land q) \\ \rightarrow \\ () \\ \sim p \\ \lor q)$	$ \begin{array}{c} \sim [(p \\ \land q) \\ \rightarrow \\ (\sim p \\ \lor q)] \end{array} $
Т	Т	Т	F	Т	Т	F
Т	F	F	F	F	Т	F

F	Т	F	Т	Т	Т	F
F	F	F	Т	Т	Т	F
	1	c	.1 .	11.1	-	

It is clear from the table that

 $\sim [(p \land q) \rightarrow (\sim p \lor q)]$ is a contradiction.

(c)

19

Plants are living objects is not a statement.

				Α	NSWER-	KEY]
Q.	1	2	3	4	5	6	7	8	9	10	
A.	D	С	С	А	В	А	А	A	С	В	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	А	А	В	A	D	В	С	А	С	А	
			A 1				0				
5	5 P	1/	Δ		Т					R 1	
							-	N			