

DPP DAILY PRACTICE PROBLEMS									
	CLASS : XIth DATE :			SUBJECT DPP No.	: CHEMISTRY : 3				
Topic :- SOME BASIC CONCEPTS OF CHEMISTRY									
1.	For the reaction, $A + 2B$ a) 5 moles of <i>C</i>	$\rightarrow C, 5 \text{ moles of } A \text{ and } 8$ b) 4 moles of C	moles of <i>B</i> will j c) 8 moles of	produce: C c	d) 13 moles of <i>C</i>				
2.	Which sample contains a) 1 mg of C_4H_{10}	the largest number of ator b) 1 mg of N ₂	ns? c) 1 mg of Na	C	d) 1 mL of water				
3.	An aromatic hydrocarbo monosulphonic acid. 0.1 molecular formula of hy a) C_5H_4	on with empirical formula 04 g of the acid required 3 drocarbon is b) C ₁₀ H ₈	C_5H_4 on treatm 10 mL of $\frac{N}{20}$ NaO c) $C_{15}H_{12}$	ent with con H for comple	centrated H_2SO_4 gave a ete neutralisation. The d) $C_{20}H_{16}$				
4.	If isotopic distribution o 12 g of carbon is a) 1.032×10^{22}	f C-12 and C-14 is 98% an b) 3.01 × 10 ²²	d 2% respective c) 5.88× 10 ²³	ely then the r	number of C-14 atoms in d) 6.023× 10 ²³				
5.	Zinc sulphate contains 2 proportions is true then a) 45.3 g	2.65% of zinc and 43.9% the weight of zinc require b) 4.53 g	of water of crys ed to produce 2(c) 0.453 g	tallization. If) g of the cry	the law of constant stals will be d) 453 g				
5.	The number of gram mo a) 10	lecules of chlorine in 6.02 b) 100	× 10 ²⁵ hydroge c) 50	en chloride n	nolecules is 1) 5				
7.	The net charge on ferror a) +2	is ion is: b) +3	c) +4		1) +5 RN				
8.	H_2O_2 solution used for h the solution. The molecu a) 3.0	nair bleaching is sold as a s Ilar weigh <mark>t of H₂O₂ is 34.</mark> b) 1.5	solution of appr The molarity of c) 0.15	oximately 5. this solution	0 g H ₂ O ₂ Per 100 mL of is approximately: 1) 4.0				
9.	4.6×10^{22} atoms of an e a) 290	lement weigh 13.8 g. The b) 180	atomic weight c c) 34.4	of element is	d) 10.4				
10.	The weight of 50% (wt., a) 73 g	/wt.) solution of HCl requi b) 100 g	red to react wit c) 146 g	h 100 g of Ca c	nCO ₃ would be: d) 200 g				
11.	An element, <i>X</i> has the for ${}^{200}X$: 90% ${}^{199}X$: 8.0% ${}^{202}X$: 2.0% The weighted average at a) 200 u	llowing isotopic composit tomic mass of the naturall b) 210 u	ion y occurring eler c) 202 u	nent X is clo	sed to 1) 199 u				

1

MAHESH SIR'S NOTES - 7798364224

Smart DPPs

12.	Law of constant composition of conservation of mass c) Multiple proportion	ition is same as the law of	b) Conservation of energyd) Definite proportion				
13.	One atom of an element . a) 140	X weight 6.643× 10 ⁻²³ g. b) 150	number of moles of atom : c) 250	in 20 kg is d) 500			
14.	The reaction, $2C + 2O_2 \rightarrow 2CO_2$ is carried out by taking 24 g carbon and 96 g O_2 . Which one is limiting reagent?						
	a) C	b) 0 ₂	c) CO ₂	d) None of these			
15.	1000 g aqueous solution a) 10 ppm	of CaCO ₃ contains 10 g o b) 100 ppm	f calcium carbonate. Conce c) 1000 ppm	entration of solution is: d) 10000 ppm			
16.	The maximum amount of BaSO ₄ precipitated on mixing 20 mL of 0.5 <i>M</i> BaCl ₂ with 20 mL o						
	H_2SO_4 is: a) 0.25 mole	b) 0.5 mole	c) 1 mole	d) 0.01 mole			
17.	The percentage of an ele a) 45	ment <i>M</i> is <mark>53 in its oxide</mark> b) 9	of molecular formula M ₂ O c) 18	 3. Its atomic mass is about d) 27 			
18.	H ₃ BO ₃ is: a) Monobasic and weak Lewis acid b) Monobasic and weak Bronsted acid c) Monobasic and strong Lewis acid d) Tribasic and weak Bronsted acid						
19.	A sample of peanut oil weighing 1.5763 g is added to 25 mL of 0.4210 M KOH after saponification is complete 8.46 mL of 0.2732 M H ₂ SO ₄ is needed to neutralise excess KOH. The saponification number of peanut oil is:						
	a) 209.6	b) 108.9	c) 98.9	d) 218.9			
20.	What quantity of ammor neutralize a solution con a) 272 g	nium sulphate is necessary itaining 292 g of <i>HCl</i> ? [<i>HC</i> b) 403 g	y for the production of NH_{2} $Cl = 36.5, (NH_{4})_{2}SO_{4} = 13$ c) 528 g	H_3 gas sufficient to 32, $NH_3 = 17$] d) 1056 g			