

DPPP DAILY PRACTICE PROBLEMS								
	CLASS : XIth DATE :			SUBJECT : CHEMISTRY DPP No. : 3				
Topic :- STRUCTURE OF ATOM								
1.	The energy of an electro electron in the excited state -122.4 eV		atom is -13.6 e	W. The possible energy value of d) 13.6 eV				
2.	When the azimuthal qua a) 7	ntum number ha <mark>s the val</mark> b) 5	ue of 2, the num	ber of orbitals possible are d) 0				
3.	Compared to the lightes a) 200 times	t atom the heaviest atom v b) 238 times	weighs: c) 92 times	d) 16 times				
4.	If the following particles a) Proton	travel with equal speed, t	hen for which p c) α-particle	article the wavelength will be longest d) eta -particle				
5.	The orbital cylindrically a) p_z	symmetrical about <i>x</i> -axis b) p _y	s is: c) <i>p_x</i>	d) d_{xz}				
6.	The orbital with maximu a) <i>s</i>	um number of possible ori b) <i>p</i>	ientations is: c) d	d) <i>f</i>				
7.	Einstein's photoelectric equation states that $E_k = hv - W$ Here, E_k refers to a) Kinetic energy of all ejected electrons c) Minimum kinetic energy of emitted electrons d) Maximum kinetic energy of emitted electrons							
8.	The orbital closest to the a) 7s	b) 3 <i>d</i>	c) 6p	d) 4 <i>s</i>				
9.	Isoelectronic pair amon a) Ca and K	g the following is b) Ar and Ca ²⁺	c) K and Ca ²⁺	d) Ar and K				
10.	. We can say that the energy of a photon of frequency v is given by $E = hv$, where h is Planck's constant. The momentum of a photon is $p = h/\lambda$, where λ is the wavelength of photon. Then we may conclud that velocity of light I equal to:							
	a) $(E/p)^{1/2}$	b) <i>E</i> / <i>p</i>	c) <i>Ep</i>	d) $(E/p)^2$				
11.	Uncertainty in position of (Planck's constant $h = 6$ a) 2.1×10^{-28}		ce is 10^{-5} m. Her c) 0.5×10^{-34}	nce, uncertainty in velocity (ms ⁻¹) is d) $5.0 imes 10^{-24}$				
12.			c) 10^{-26} kg	d) 10^{-27} kg				

1

MAHESH SIR'S NOTES - 7798364224

13.	The de Broglie waveleng a) 1×10^{-36} m	gth of a 66 kg man sking d b) $1 imes 10^{-37}$ m	own Kufri Hill in Shimla a c) 1 × 10 ^{–38} m	t $1 \times 10^3 \text{m sec}^{-1}$ is: d) $1 \times 10^{-39} \text{m}$			
14.	 The Z –component of angular momentum of an ela a) Magnetic quantum number c) Spin quantum number 		lectron in an atomic orbital is governed by the b) Azimuthal quantum number d) Principal quantum number				
15.	An electron with values respectively, belongs to a) 4 <i>s</i> -orbital	-	set of four quantum numbc) 4<i>d</i>-orbital	pers n, l, m_l and s d) $4f$ -orbital			
16.	Consider the following s 1.Electron density in <i>xy</i>	statements : plane in $3d_{x^2-y^2}$ orbital is plane in $3d_{z^2}$ orbital is ze e spherical node ne nodal plane	s zero	d) 1 and 3			
17.	The maximum probabili a) Along the <i>x</i> -axis b) Along the <i>y</i> -axis c) At an angle of 45° from d) At an angle of 90° from		he d_{xy} orbital is:				
18.	Two electron in an atm of an element cannot have: a) The same principle quantum number b) The same azimuthal quantum number c) The same magnetic quantum number d) An identical set of quantum numbers						
19.	The energy of electromagnetic radiation depends on: a) Amplitude and wavelength b) Wavelength c) Amplitude d) Temperature of medium through which it passes						
20.	Correct electronic config a) [Ar]3 d^8 ,4 s^1	guration of Cu^{2+} is: b) [Ar] $3d^{10}$, $4s^24p^1$	c) [Ar]3 <i>d</i> ¹⁰ ,4 <i>s</i> ¹	d) [Ar]3 <i>d</i> 9			