

Class : XIth Date : Subject : CHEMISTRY DPP No. : 3

Topic :- Equilibrium

1.	Under what conditions of temperature and pressure, the formation of atomic hydrogen from			
	molecular hydrogen will be favoured most?			
	a) High temperature and high pressure		b) High temperature and low pressure	
	c) Low temperature and low pressure		d) Low temperature and high pressure	
2.	Mohr's salt is a:			
	a) Normal salt	b) Acid salt	c) Basic salt	d) Double salt
3.	pH of 0.05 <i>M</i> Mg(OH) ₂	is:		
	a) 13	b) 10	c) 1	d) Zero
4.	In which of the following reactions, the concentration of product is higher than the			
	concentration of reactant at eq <mark>uilibrium? (<i>K</i> = equilibrium</mark> constant)			
	a) $A \rightleftharpoons B$; $K = 0.001$	b) $M \rightleftharpoons N$; $K = 10$	c) $X \rightleftharpoons Y; K = 0.005$	d) $R \rightleftharpoons P$; $K = 0.01$
5.	The values of dissocia	ation co <mark>nsta</mark> nt of bases a	re given below. Which is	s the weakest base?
	a) $1.8 imes 10^{-5}$	b) 4.8×10^{-10}	c) 7.2×10^{-11}	d) $7.07 imes 10^{-7}$
6.	The dissociation equilib	orium of a gas AB ₂ can be r	epresented as :	
	$2AB_2(g) \rightleftharpoons 2AB_2(g)$	$AB(g) + B_2(g)$		
	The degree of dissociation is 'x' and is small compared to 1. The expression relating the degre dissociation (x) with equilibrium constant K_p and total pressure p is :			
	a) $(2K_p/P)^{1/3}$	b) $(2K_p/P)^{1/2}$	c) (K_p/P)	d) $(2K_p/P)$
7.	In which one of the foll	owing gaseous equilibria, I	K_p is less than K_c ?	
	a) $N_2O_4 \rightleftharpoons 2NO_2$	b) $2SO_2 + O_2 \rightleftharpoons 2SO_3$	c) $2HI \rightleftharpoons H_2 + I_2$	d) $N_2 + O_2 \rightleftharpoons 2NO$
8.	$K_{\rm sp}$ for Cr(OH) ₃ is 2.7	$' \times 10^{-31}$. What is its sol	lubility in mol/L?	
	a) 1×10^{-8}	b) 8×10^{-8}	c) 1.1×10^{-8}	d) 0.18×10^{-8}
9.	N_2Q_4 is dissociated to 33% and 40% at total pressure P_1 and P_2 atm respectively. Then the			
	is:			
	a) 7/4	b) 7/3	c) 8/3	d) 8/5
10.	In the reactions, $A + 2E$	$B \rightleftharpoons 2C$, if 2 moles of A, 3.0	moles of <i>B</i> and 2.0 moles	of <i>C</i> are placed in a 2 L
	flask and the equilibrium concentration of C is 0.5 mol/L, the equilibrium constant (K_c) for the			
	reactions is			
	a) 0.21	b) 0.50	-c) 0.75	d) 0.025
11.	The pH value of 1/1000 N KOH solution is			
	a) 3	b) 10^{-11}	c) 2	d) 11
12.	The pH of tears coming out of a person's eye is:			
	a) 7.4	b) 6.4	c) 7.0	d) 2.36
13.	The solubility of CaF ₂ is 2×10^{-4} mol/L. Its solubility product (K_{sp}) is			
	a) 2.0×10^{-4}	b) 4.0×10^{-3}	c) 8.0×10^{-12}	d) 3.2×10^{-11}
14.	The solubility product of a salt having general formula MX_2 in water is 4×10^{-12} . The concentration of			
	M ²⁺ ions in the aqueous solution of the salt is			
	a) 2.0×10^{-6} M	b) $1.0 \times 10^{-4} M$	c) 1.6×10^{-4} M	d) $4.0 imes 10^{-10}$ M
15.	The solubility product of barium sulphate is 1.5×10^{-9} at 18°C. Its solubility in water at 18°C			
	is			

MAHESH SIR'S NOTES - 7798364224

d) Ionised in the small intestine and almost unionised in the stomach

SMARTLEARN COACHING