

CLASS : XITH SUBJECT : PHYSICS DATE : DPP NO. : 3

Topic :- UNITS AND MEASUREMENTS

		ef Je i mar		enermenikanskrimenikanskrimenikanskrimenika	~
1.	The dimensions of				$\frac{a}{b}$ in the equation $p=$
	$\frac{a-t^2}{bx}$ where p is pressure, x is distance and t is time, are				
	a) $[M^2LT^{-3}]$	b) [MT ⁻²]	c) [LT ⁻³]	d) [ML ³	T^{-1}

2. The focal length of a mirror is given by $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ where u and v represent object and image `distances respectively. The maximum relative error in f is

a)
$$\frac{\Delta f}{f} = \frac{\Delta u}{u} + \frac{\Delta v}{v}$$

b) $\frac{\Delta f}{f} = \frac{1}{\Delta u/u} + \frac{1}{\Delta v/v}$
c) $\frac{\Delta f}{f} = \frac{\Delta u}{u} + \frac{\Delta v}{v} - \frac{\Delta (u+v)}{u+v}$
d) $\frac{\Delta f}{f} = \frac{\Delta u}{u} + \frac{\Delta v}{v} + \frac{\Delta u}{u+v} + \frac{\Delta v}{u+v}$

3. Which of the following relation is wrong

- a) 1 ampere \times 1 ohm = 1 volt b) 1 watt \times 1 sec = 1 joule
- c) $1 \times \text{newton per coulomb} = 1 \text{ volt per meter}$ d) $1 \text{ coulomb} \times 1 \text{ volt} = 1 \text{ watt}$

4. The unit of self inductance of a coil is
a) Farad
b) Henry
c) Weber

- Out of the following four dimensional quantities, which one qualifies to be called a dimensional constant?
 a) Acceleration due to gravity
 b) Surface tension of water
- c) Weight of a standard kilogram mass d) The velocity of light in vacuum
- 6. The radius of the proton is about 10^{-15} m. The radius of the observable universe is 10^{26} m. identify the distance which is half-way between these two extremes on a logarithmic scale.

 a) 10^{21} m
 b) 10^{6} m
 c) 10^{-6} m
 d) 10^{0} m
- 7. The position of a particle at time t is given by the equation $x(t) = \frac{v_0}{A} (1 e^{At}), v_0 = \text{constant and } A > 0.$ Dimensions of v_0 and A respectively are
 - a) $[M^0LT^0]$ and $[M^0L^0T^{-1}]$ b) $[M^0LT^{-1}]$ and $[M^0LT^{-2}]$ c) $[M^0LT^{-1}]$ and $[M^0L^0T]$ d) $[M^0LT^{-1}]$ and $[M^0L^0T^{-1}]$
- 8. One nanometre is equal to a) $10^9 mm$ b) $10^{-6} cm$ c) $10^{-7} cm$ d) $10^{-9} cm$
- 9. [ML²T⁻³A⁻²] is the dimensional formula of a) Electric resistance b) Capacity c) Electric potential d) Specific resistance
- 10. The dimensions of Planck's constant are a) $[M^2L^2T^{-2}]$ b) $[MLT^{-2}]$ c) $[ML^2T^{-2}]$ d) $[ML^2T^{-1}]$
- 11. If the length of rod A is 3.25 ± 0.01 cm and that of B is 4.19 ± 0.01 cm then the rod B is longer than rod A

d) Tesla

by

a)
$$0.94 \pm 0.00 \ cm$$

b)
$$0.94 \pm 0.01 \, cm$$

c)
$$0.94 \pm 0.02 \ cm$$

d)
$$0.94 \pm 0.005$$
 cm

12. The dimensions of $e^2/4\pi\epsilon_0 hc$, where e, ϵ_0, h and c are electronic charge, electric permittivity, Planck's constant and velocity of light in vacuum respectively, are

a)
$$[M^0L^0T^0]$$

b)
$$[ML^0T^0]$$

c)
$$[M^0LT^0]$$

d)
$$[M^0L^0T^1]$$

13. The length, breadth and thickness of a block are given by l = 12cm, b = 6 cm and t =2.45cmThe volume of block according to the idea of significant figures should be

a)
$$1 \times 10^2 \ cm^3$$

b)
$$2 \times 10^2 \ cm^3$$

c)
$$1.763 \times 10^2 \ cm^3$$

14. A physical quantity A is related to four observables a, b, c and d as follows

$$A = \frac{a^2 b^3}{c\sqrt{d}}$$

The percentage errors of measurement in a, b, c and d are 1%, 3%, 2% and 2% respectively. What is the percentage error in the quantity A?

15. Ampere-hour is the unit of

a) Quantity of charge

b) Potential

c) Energy

d) Current

16. The dimensions of $1/2 \varepsilon E^2$ are same as

a) Energy density (energy per unit volume)

c) Power

b) Energy

d) None of the above

17. The velocity of a particle (v) at an instant t is given by $v = at + bt^2$ the dimension of b is

b)
$$LT^{-1}$$

c)
$$LT^{-2}$$

d)
$$LT^{-3}$$

18. Wavelength of ray of light is 0.00006 m. It is equal to

- a) 6 micron
- b) 60 micron
- c) 600 micron

d) 0.6 micron

19. The unit of surface tension in SI system is

- a) Dyne/cm²
- b) Newton /m
- c) Dyne/cm

d) Newton/m

20. Dimensions of $\frac{1}{\mu_0 \epsilon_0}$, where symbols have their usual meaning, are

a)
$$[lT^{-1}]$$

b)
$$[L^{-1}T]$$

c)
$$[L^{-2}T^2]$$

d)
$$[L^2T^{-2}]$$