

MAHESH SIR'S NOTES - 7798364224

south

- a) 30° with downstream
- b) 60° with downstream
- c) 120° with downstream
- d) South
- 10. The numerical ratio of displacement to the distance covered is always
 - a) Less than one

- b) Equal to one
- c) Equal to or less than one d) Equal to or greater than one
- 11. From the top of tower, a stone is thrown up. It reaches the ground in t_1 second. A second stone thrown down with the same speed reaches the ground in t₂ second. A third stone released from rest reaches the ground in t_3 second. Then

a)
$$t_3 = \frac{(t_1 + t_2)}{2}$$
 b) $t_3 = \sqrt{t_1 t_2}$ c) $\frac{1}{t_3} = \frac{1}{t_1} - \frac{1}{t_2}$ d) $t_3^2 = t_2^2 - t_1^2$

- 12. One car moving on a straight road covers one third of the distance with $20 \, km/hr$ and the rest with $60 \ km/hr$. The average speed is
 - c) $46\frac{2}{3}$ km/hr a) 40 km/hr b) 80 km/hr d) 36 km/hr
- 13. A particle starts from rest, acceleration at $2 m/s^2$ for 10 s and then goes with constant speed for 30 s and then decelerates at $4 m/s^2$ till it stops. What is the distance travelled by it a) 750 m b) 800 m d) 850 m c) 700 m
- 14. Acceleration of a particle changes when
 - a) Direction of velocity changes b) Magnitude of velocity changes c) Both of above d) Speed changes
- 15. A cat moves from X to Y with a uniform speed v_u and returns to X with a uniform speed v_d . The average speed for this ground trip is

a)
$$-\frac{2v_d v_u}{v_d + v_u}$$
 b) $\sqrt{v_u v_d}$ c) $\frac{v_d v_u}{v_d + v_u}$ d) $\frac{v_u + v_d}{2}$

16. A boat takes two hours to travel 8 km and back in still water. If the velocity of water 4 kmh^{-1} , the time taken for going ups tream 8km and coming back is b) 2 h 40 min

a) 2h

c) 1 h 20 min

- d) Cannot be estimated with the information given
- 17. A person travels along a straight road for the first half time with a velocity v_1 and the next half time with a velocity v_2

The mean velocity V of the man is

a)
$$\frac{2}{V} = \frac{1}{v_1} + \frac{1}{v_2}$$
 b) $V = \frac{v_1 + v_2}{2}$ c) $V = \sqrt{v_1 v_2}$ d) $V = \sqrt{\frac{v_1}{v_2}}$

18. A particle is projected with velocity v_0 along x - axis. The deceleration on the particle is proportional to the square of the distance from the origin i.e., $a = -ax^2$. The distance at which the particle stops is

a)
$$\sqrt{\frac{3v_0}{2\alpha}}$$
 b) $\left(\frac{3v_0}{2\alpha}\right)^{\frac{1}{3}}$ c) $\sqrt{\frac{3v_0^2}{2\alpha}}$ d) $\left(\frac{3v_0^2}{2\alpha}\right)^{\frac{1}{3}}$

19. Two balls are dropped to the ground from different heights. One ball is dropped 2 s after the other but they

both strike the ground at the same time. If the first ball takes 5 s to reach the ground, then the difference in initial heights is (g = 10 ms^{-2}) a) 20 m b) 80 m c) 170 m d) 40 m

20. A body starts from origin and moves along *x*-axis such that at any instant velocity is $v_t = 4t^3 - 2t$ where *t* is in second and v_t in ms⁻¹. The acceleration of the particle when it is 2m from the origin is a) $28ms^{-2}$ b) $22ms^{-2}$ c) $12ms^{-2}$ d) $10ms^{-2}$

