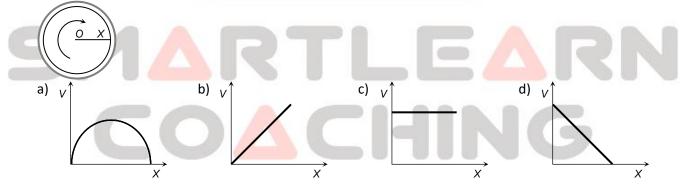


CLASS : XITH DATE :


SUBJECT : PHYSICS DPP NO. :3

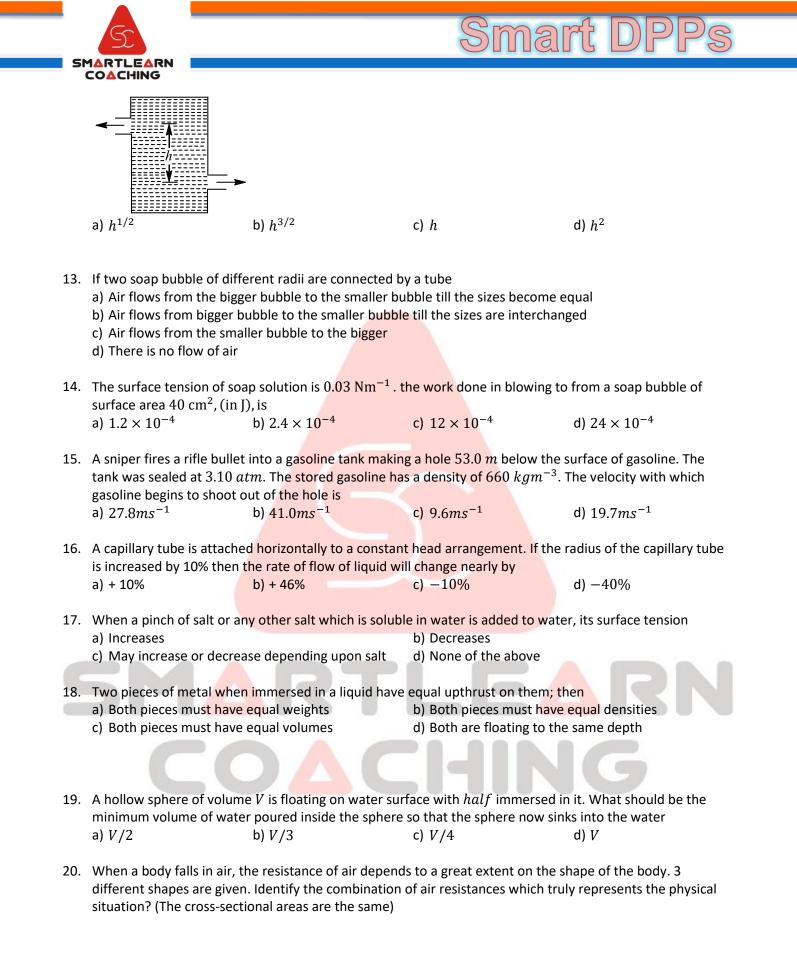
Topic :-.MECHANICAL PROPERTIES OF FLUIDS

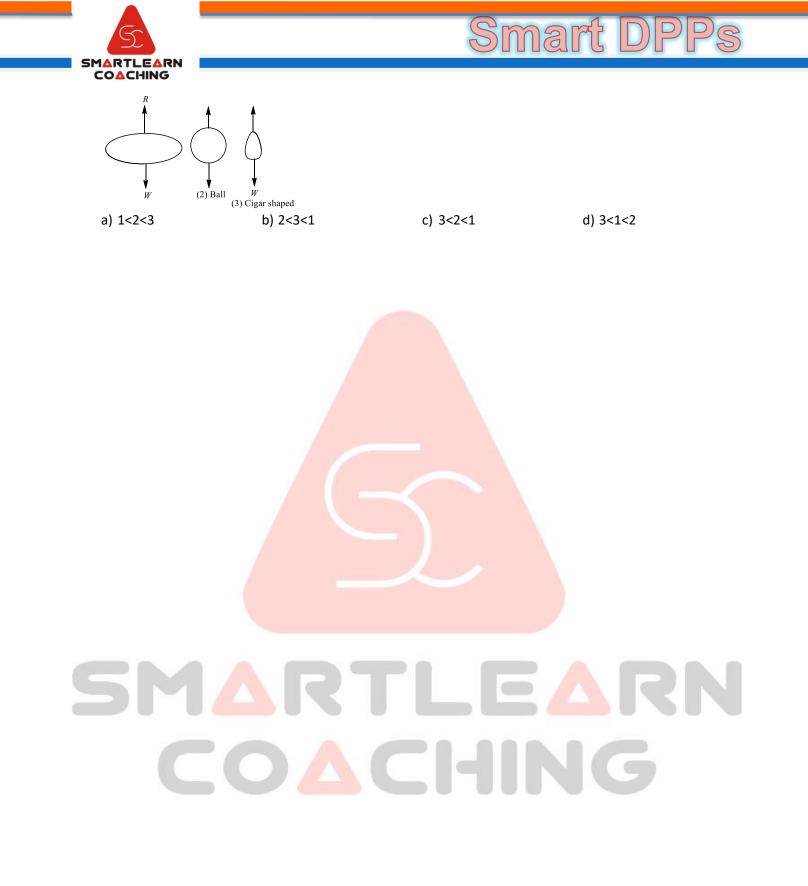
- 1. Water rises in a capillary tube to a height *h*. Choose false statement regarding capillary rise from the following.
 - a) On the surface of Jupiter, height will be less than h
 - b) In a lift moving up with constant acceleration height is less than h
 - c) On the surface of moon the height is more than *h*
 - d) In a lift moving down with constant acceleration height is less than h
- 2. Water is in streamline flow along a horizontal pipe with nonuniform cross-section. At a point in the pipe where the area of cross-section is 10 cm^2 , the velocity of water is 1 ms^{-1} and the pressure is 2000 Pa. The pressure at another point where the cross-sectional area is 5 cm^2 is

a) 4000 Pa	b) 2000 Pa	c) 1000 Pa	d) 500 Pa
	6 00 40 ⁻³ 1 6 11 11		

- 3. An iron sphere of mass 20×10^{-3} kg falls through a viscous liquid with terminal velocity
 0.5 ms^{-1} . The terminal velocity (in ms⁻¹) of another
 iron sphere of mass 54×10^{-2} kg is
a) 4.5
b) 3.5
c) 2.5
d) 1.5
- 4. The diagram shows a cup of tea seen from above. The tea has been stirred and is now rotating without turbulence. A graph showing the speed *v* with which the liquid is crossing points at a distance *X* from *O* along a radius *XO* would look like

5. In the following fig. is shown the flow of liquid through a horizontal pipe. Three tubes *A*, *B* and *C* are connected to the pipe. The radii of the tubes *A*, *B* and *C* at the junction are respectively 2 *cm*, 1 *cm* and





	c) Height of the liquid in		me			
6.	If the length of tube is less and cannot accommodate the maximum rise of liquid then a) liquid will form fountain b) liquid will not rise c) the meniscus will adjust itself so that the water does not spill					
7.	What is the ratio of surface energy of 1 small drop and 1 large drop if 1000 drops combined to form 1 large					
	drop? a) 100 : 1	b) 1000 : 1	c) 10:1	d) 1:100		
8.	Determine the energy stored in the surface of a soap bubble of radius 2.1 cm if its surface tension is 4.5×10^{-2} Nm ⁻¹ .					
	a) 8 mJ	b) 2.46 mJ	c) 4.93×10^{-4} J	d) None of these		
9.	Two capillaries of same length and radii in the ratio 1:2 are connected in series. A liquid flows through them in streamlined condition. If the pressure across the two extreme ends of the combination is $1 m$ of water, the pressure difference across first capillary of					
	a) 9.4 m	b) 4.9 m	c) 0.49 <i>m</i>	d) 0.94 <i>m</i>		
10.	D. A raindrop with radius $1.5 mm$ falls from a cloud at a height 1200 m from ground. The density of water is $1000 kg/m^3$ and density of air is $1.2kg/m^3$. Assume the drop was spherical throughout the fall and there is no air drag. The impact speed of the drop will be a) $27 km/h$ b) $550 km/h$ c) Zero d) $129 km/h$					
		b) 550 km/n		u) 129 km/m		
11.		8.03 g in air. A piece of meta yeigh 15.23 g in water. Then b) $\frac{17.03}{18.03}$				

12. There are two identical small holes on the opposite sides of a tank containing a liquid. The tank is open at the top. The difference in height between the two holes is h. As the liquid comes out of the two holes, the tank will experience a net horizontal force proportional to

3

