

a) For $n > 1$ b) For all $n \in N$ c	c) For $n > 2$	d) None of these
---------------------------------------	----------------	------------------

S

12	. 2 ³ⁿ − 7n − 1 is divisib a) 64	le by b) 36	c) 49	d) 25			
13	. For all $n ∈ N$, $3n^5 + 5n^3$ a) 3	u ³ + 7 <i>n</i> is divisible by b) 5	c) 10	d) 15			
14	14. If <i>n</i> is a positive integer, then $n^3 + 2n$ is divisible by						
	a) 2	b) 6	c) 15	d) 3			
15	. For all <i>n</i> ∈ <i>N</i> , 49 ^{<i>n</i>} + 16 a) 64	5n — 1 is divisible by b) 8	c) 16	d) 4			
16. If $P(n)$ is a statement such that $P(3)$ is true. Assuming $P(k)$ is true $\Rightarrow P(k+1)$ is true for all $k \ge 3$,							
	en $P(n)$ is true a) For all n		c) For $n > 4$	d) None of these			
17	17. If <i>n</i> is an odd positive integer, then $a^n + b^n$ is divisible by						
	a) <i>a</i> + <i>b</i>	b) <i>a</i> – <i>b</i>	c) $a^2 + b^2$	d) None of these			
18	The <i>n</i> th terms of the set a) $4n - 1$	eries $3 + 7 + 13 + 21 + 3$ b) $n^2 + 2n$		d) $n^2 + 2$			
19. If <i>a</i> , <i>b</i> are distinct rational numbers, then for all $n \in N$ the number $a^n - b^n$ is divisible by							
15	a) $a - b$	b) $a + b$	c) $2a - b$	d) $a - 2b$			
20. $x(x^{n-1} - n\alpha^{n-1}) + \alpha^n(n-1)$ is divisible by $(x - \alpha)^2$ for							
20	. $x(x^{n-1} - n\alpha^{n-1}) + \alpha^n$ a) $n > 1$	n(n-1) is divisible by (x b) $n > 2$	$(\alpha - \alpha)^2$ for c) All $n \in N$	d) None of these			
	<i><i>wjiv r</i></i>						

SMARTLEARN COACHING

Smart DPPs