

CLASS: XIth DATE:

SUBJECT: MATHS DPP NO.: 3

Topic: - complex numbers and quadratic equations

 $|z|^2 = 0$, then the

locus of z is

- a) A circle
- c) A pair of straight lines

- b) A straight line
- d) None of these

2. If |z - i| = 1 and $\arg(z) = \theta$, where $0 < \theta < \frac{\pi}{2}$, then $\cot \theta - \frac{2}{z}$ equals

a) 2i

b) -i

d) 1 + i

3. If for complex numbers z_1 and z_2 , $\arg(z_1) - \arg(z_2) = 0$, then $|z_1 - z_2|$ is equal to

- a) $|z_1| + |z_2|$
- b) $|z_1| |z_2|$
- c) $||z_1| |z_2||$

4. If x, y, z are real and distinct, then $x^2 + 4y^2 + 9z^2 - 6yz - 3zx - 2xy$ is always

- a) Non-negative
- b) Non-positive
- c) Zero

5. The locus of the centre of the circle which touches the circles $|z - z_1| = a$ and $|z - z_2| = b$ externally $(z, z_1 \text{ and } z_2 \text{ are complex numbers})$ will be

- a) An ellipse
- b) A hyperbola
- c) A circle
- d) None of these

The modulus and amplitude of $(1 + i\sqrt{3})^8$ are respectively

- a) 256 and $\frac{\pi}{2}$
- b) 256 and $\frac{2\pi}{3}$
- d) 256 and $\frac{8\pi}{2}$

7. The solution set of the inequation $x^2 + (a + b)x + ab < 0, a < b$, is

- a)(a,b)
- b) $(-\infty, a) \cup (b, \infty)$
- c) (-b, -a)
- d) $(-\infty, -b) \cup (-a, \infty)$

If ω is an imaginary cube root of unity and x=a+b, $y=a\omega+b\omega^2$, $z=a\omega^2+b\omega$, then $x^2+y^2+z^2$ is equal to

- a) 6ab
- b) 3*ab*
- c) $6a^2b^2$
- d) $3a^2b^2$

The square roots of -7, $-24\sqrt{-1}$ are

- a) $\pm (4 + 3\sqrt{-1})$ b) $\pm (3 + 4\sqrt{-1})$
- c) $\pm (3 4\sqrt{-1})$ d) $\pm (4 3\sqrt{-1})$

10. A real value of x will satisfy the equation $\left(\frac{3-4ix}{3+4ix}\right) = \alpha - i\beta$ (α, β are real), if a) $\alpha^2 - \beta^2 = -1$ b) $\alpha^2 - \beta^2 = 1$ c) $\alpha^2 + \beta^2 = 1$ d) $\alpha^2 - \beta^2 = 2$

11. If $\omega(\neq 1)$ is a cube root of unity and $(1 + \omega)^7 = A + B\omega$, then A and B are respectively

- a) 0, 1

c) 1, 0

d) -1.1

12. If the equation $x^2 + 9y^2 - 4x + 3 = 0$ is satisfied values of x and y, then

a)
$$1 \le x \le 3$$

b)
$$2 \le x \le 3$$

c)
$$-\frac{1}{3} < y < 1$$

c)
$$-\frac{1}{3} < y < 1$$
 d) $0 < y < \frac{2}{3}$

13. If the sum of the roots of the equation $(a + 1)x^2 + (2a + 3)x + (3a + 4) = 0$ is -1, then the product of the roots is

14. The roots of the equation $2^{x+2}3^{3x/(x-1)} = 9$ are given by

a)
$$1 - \log_2 3, 2$$

b)
$$\log_2\left(\frac{2}{3}\right)$$
, 1

c)
$$2, -2$$

d)
$$-2$$
, $1 - \frac{\log 3}{\log 2}$

15. If a+b+c=0 and $a\neq c$ then the roots of the equation $(b+c-a)x^2+(c+a-b)x+(a+b-c)=0$

- a) Real and unequal
- b) Real and equal
- c) Imaginary
- d) None of these

16. If α , β are the roots of the equation $x^2 + \sqrt{\alpha} x + \beta = 0$, then the values of α and β are

a)
$$\alpha = 1$$
, $\beta = -1$

b)
$$\alpha = 1, \beta = -2$$
 c) $\alpha = 2, \beta = 1$

c)
$$\alpha = 2, \beta = 1$$

d)
$$\alpha = 2, \beta = -2$$

17. If b > a, then the equation (x - a)(x - b) - 1 = 0 has

- a) Both roots in [a, b]
- b) Both roots in $(-\infty, a)$
- c) Roots in $(-\infty, a)$ and other in (b, ∞)
- d) Both roots in (b, ∞)

18. The value of $\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)\left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right)... \infty$ is a) 1 b) 0 c) -1

d) None of these

19. The value of the expression

$$2\left(1+\frac{1}{\omega}\right)\left(1+\frac{1}{\omega^2}\right)+3\left(2+\frac{1}{\omega}\right)\left(2+\frac{1}{\omega^2}\right)+\cdots+(n+1)\left(n+\frac{1}{\omega}\right)\left(n+\frac{1}{\omega^2}\right)$$
 is a) $\left[\frac{n(n+1)}{2}\right]^2$ b) $\left[\frac{n(n+1)}{2}\right]^2-n$ c) $\left[\frac{n(n+1)}{2}\right]^2+n$ d) None of these

a)
$$\left[\frac{n(n+1)}{2}\right]^2$$

b)
$$\left[\frac{n(n+1)}{2}\right]^2 - n$$

c)
$$\left[\frac{n(n+1)}{2}\right]^2 + n$$

20. One of the square root of $6 + 4\sqrt{3}$ is

a)
$$\sqrt{3}(\sqrt{3} + 1)$$

a)
$$\sqrt{3}(\sqrt{3}+1)$$
 b) $-\sqrt{3}(\sqrt{3}-1)$

c)
$$\sqrt{3}(-\sqrt{3}+1)$$

d) None of these