

10. The sides *AB*, *BC*, *CA* of a triangle *ABC* have 3, 4 and 5 interior points respectively on them. The total number of triangles that can be constructed by using these points as vertices is 2^{220} b) 204 constructed by using these points as vertices is

a) 220 b) 204 c) 205 d) 195

1

MAHESH SIR'S NOTES - 7798364224

11. ${}^{n}P_{r} = 3024$ and n	-	c) 3	d) 2
12. The value of $^{35}C_8$ + a) $^{46}C_7$	$ \sum_{r=1}^{7} \frac{^{42-r}C_7 + \sum_{s=1}^{5}}{^{46}C_8} $	c) $^{47-s}C_{40-s}$, is	d) ${}^{47}C_8$
13. In Q.65, the number oa) 9 !	f ways in which A_1 and A_2 b) 2 (9 !)	A ₂ are next to each other c) $\frac{1}{2}(9!)$	is d) None of these
14. The number of arrangements which can be made using all the letters of the word LAUGH, if the vowels			
are adjacent, is a) 10	b) 24	c) 48	d) 120
15. How many ways are three to arrange the letters in the word 'GARDEN' with the vowels in alphabetical			
order? a) 120	b) 240	c) 360	d) 480
 16. 7 relatives of a man comprise 4 ladies and 3 gentlemen his wife has also 7 relatives, 3 of them are ladies and 4 gentlemen. In how many ways can they invite a dinner party of 3 ladies and 3 gentlemen so that there are 3 of man's relative and 3 of the wife's relative? a) 485 b) 500 c) 486 d) 102 			
17. There are <i>n</i> -points in a plane of which <i>p</i> points are collinear. How many lines can be formed from these points?			
a) ${}^{n}C_{2} - {}^{p}C_{2} + 1$	b) ${}^{n}C_{2} - {}^{p}C_{2}$	c) $n - {}^{p}C_{2}$	d) ${}^{n}C_{2} - {}^{p}C_{2} - 1$
18. How many numbers between 5000 and 10,000 can be formed using the digits 1,2,3,4,5,6,7,8,9, each digit appearing not more than once in each number?a) $5 \times {}^{8}P_{3}$ b) $5 \times {}^{8}C_{8}$ c) $5! \times {}^{8}C_{3}$ d) $5! \times {}^{8}C_{3}$			
19. The number of ways in which 20 one rupee coins can be distributed among 5 people such that each			
person, gets at least 3 rup a) 26		c) 125	d) None of these
20. The maximum numbera) 25	er of points of intersection b) 24	on of 6 circles is c) 50	d) 30

Smart DPPs