DPP DAILY PRACTICE PROBLEMS

Class: XIth Date:

Subject :Maths DPP No. :3

	Topic:-Binomial Theorem							
1.	If $(1+x)^n = C_0 + C_1 x + C_1 x + C_2 x + C_3 x + C_4 x + C_4 x + C_5 x + C$	$C_2x^2+\ldots+C_nx^n$, then the	e value of $C_0+2C_1+3C_2$ -	$+\ldots+(n+1)C_n$ will be				
2.	In the expansion of $(x^3 - x^3)$	$\left(-\frac{1}{x^2}\right)^n$, $n \in N$, if the sum of	of the coefficients of x^5 and	$\mathrm{d} x^{10}$ is 0, then $n =$				
	a) 25	b) 20	c) 15	d) None of these				
3.	In the expansion of $(1 +$	$(x + x^2 + x^3)^6$, then coeff	icient of x^{14} is					
	a) 130	b) 120	c) 128	d) 125				
4.	The 14th term from the	end in the expansion of $($	$\sqrt{x} - \sqrt{y}$) ¹⁷ is					
5.		b) $^{17}C_6 \left(\sqrt{x}\right)^{11}y^3$ nts in the expansion of (1	c) ${}^{17}C_4x^{13/2}y^2 + 2x + 3x^2 + \dots + nx^n)^2$ is	d) None of these				
6.		b) $\sum n$ x^k in the expansion of (1)	c) $\sum n^2 + x + x^2$) ⁿ for $k = 0, 1, 2,$	d) $\sum n^3$, $2n$ then				
	a) $-a_0$	b) 3 ⁿ	c) $n \cdot 3^{n+1}$	d) $n \cdot 3^n$				
7.	The coefficient of x^n in t	the polyn <mark>omial $(x + {}^{n}C_0)$</mark>	$(x + 3 {}^{n}C_{1})(x + 5 {}^{n}C_{2}) \dots$	$[x + (2n+1)^n C_n]$				
8.		b) n. 2 ⁿ⁺¹ _{r–2} equals	c) $(n+1)2^n$	d) $n. 2^n + 1$				
	a) $^{n+1}C_r$	b) ${}^n\mathcal{C}_r$	c) ${}^nC_{r+1}$	d) $^{n-1}C_r$				
9.	For $ x < 1$, the constant	t term in the expansion of	$\frac{1}{(x-1)^2(x-2)}$ is					
	a) 2	b) 1	c) 0	d) $-\frac{1}{2}$				

10.	Coefficient of x in the expansion of	(x^2)	$+\frac{a}{x}\Big)^5$	is	S
-----	--	---------	-----------------------	----	---

a) $9a^2$

b) $10a^{3}$

c) $10a^2$

d) 10a

11. $\frac{1}{n!} + \frac{1}{2!(n-2)!} + \frac{1}{4!(n-4)!} + \cdots$ is equal to

a) $\frac{2^{n-1}}{n!}$

b) $\frac{2^n}{(n+1)!}$

d) $\frac{2^{n-2}}{(n-1)!}$

12. The greatest coefficient in the expansion of $(1 + x)^{10}$, is

a) $\frac{10!}{5!6!}$

b) $\frac{10!}{(5!)^2}$

c) $\frac{10!}{5!7!}$

d) None of these

13. In the expansion of $\left(\frac{a}{x} + bx\right)^{12}$, the coefficient of x^{-10} will be

a) $12a^{11}$

b) $12b^{11}a$

c) $12a^{11}b$

d) $12a^{11}b^{11}$

14. The coefficient of x^{10} in the expansion of $(1 + x^2 - x^3)^8$, is

a) 476

b) 496

c) 506

d) 528

If the $(r+1)^{\text{th}}$ term in the expansion of $\left\{\sqrt[3]{\frac{a}{\sqrt{b}}} + \sqrt{\frac{b}{\sqrt[3]{a}}}\right\}^{21}$ contains a and b to one and the same power, 15. then the value of r, is

a) 9

b) 10

c) 8

d) 6

16. The (r + 1)th term in the expansion of $(1 - x)^{-4}$ will be

c) $\frac{(r+2)(r+3)}{2}x^r$ d)

17. If $y = \frac{1}{3} + \frac{1 \cdot 3}{3 \cdot 6} + \frac{1 \cdot 3 \cdot 5}{3 \cdot 6 \cdot 9} + \cdots$, then the value of $y^2 + 2y$ is

a) 2

c) 0

d) None of these

18. Let $S(k) = 1 + 3 + 5 + \dots + (2k - 1) = 3 + k^2$. Then, which of the following is true?

a) S(1) is correct

b) $S(k) \Rightarrow S(k+1)$

c) $S(k) \Rightarrow S(k+1)$

d) Principle of mathematical induction can be used to prove the formula

19. The number of irrational terms in the expansion of $(5^{1/6} + 2^{1/8})^{100}$ is

a) 96

b) 97

c) 98

d) 99

20. If the *r*th term in the expansion of $(x/3 - 2/x^2)^{10}$ contains x^4 , then *r* is equal to