

CLASS : XIth
DATE :

SUBJECT : MATHS
DPP NO. : 3

Topic:- co-ordinate geometry

		र्षः भः । सार्वः ।	194 1964 1964 1964 1964 1964 1964 1964 1964 1964 1964 1964 1964 1964 1964 1964	I 1 nor nik -	
1. At a point on the ground the angle of elevation of a tower is such that its cotangent is $\frac{3}{5}$. On walking 32					
m towards the tower the cotangent of the angle of elevation is $\frac{2}{5}$. The height of the tower is					
	a) 160 m	b) 120 m	c) 64 m	d) None of these	
2.			, (3, 4), (4, 5) and (5, 6)		
	a) 0	b) 4	c) 6	d) None of these	
3.	If the area of a triangle ABC is Δ , then $a^2 \sin 2B + b^2 \sin 2A$ is equal to				
	a) 3∆	b) 2Δ	c) 4Δ	d) -4Δ	
4.	Consider the follow	ving statements :			
1. If in a $\triangle ABC$, $\frac{\sin A}{\sin c} = \frac{\sin(A-B)}{\sin(B-C)}$, then α^2 , b^2 , c^2 are in AP					
2. If exradius r_1 , r_2 and r_3 of a \triangle ABC are in HP, then the sides a , b , c are in AP					
Which of these is/are correct?					
	a) Only (1)	b) Only (2)	c) Both (1) and (2)	d) None of these	
5.	If the sides of the triar	$igle are p, q, \sqrt{p^2 + q^2} +$	pq, then the greatest an	gle is	
	a) $\frac{\pi}{2}$	b) $\frac{5\pi}{4}$	c) $\frac{2\pi}{2}$	d) $\frac{7\pi}{4}$	
			3		
6. If x, y, z are perpendicular drawn from the vertices of triangle having sides a, b and c , then the value of					
$\frac{bx}{c}$.	$+\frac{cy}{a}+\frac{az}{b}$ will be				
C	$+\frac{cy}{a} + \frac{az}{b} \text{ will be}$ a) $\frac{a^2 + b^2 + c^2}{2R}$	b) $\frac{a^2 + b^2 + c^2}{a}$	c) $\frac{a^2+b^2+c^2}{4R}$	d) $\frac{2(a^2+b^2+c^2)}{a}$	
	${2R}$	R	$\frac{C}{4R}$	u) —	
7.	7. A balloon is observed simultaneously from three points A , B and C on a straight road directly under it.				
The angular elevation at B is twice and at C is thrice that of A . If the distance between A and B is 200 m and					
the distance between B and C is 100 m, then the height of balloon is given by					
	a) 50 m	b) $50\sqrt{3}$ m	c) $50\sqrt{2}$ m	d) None of these	
	,	, , .	·, · · · ·	.,	
8. If the distance of any point <i>P</i> from the points $A(a + b, a - b)$ and $B(a - b, a + b)$ are equal, then the locus of <i>P</i> is					
	a) $x - y = 0$	b) $ax + by = 0$	c) $bx - ay = 0$	d) $x + y = 0$	
9. The length of altitude through <i>A</i> of the \triangle <i>ABC</i> , where $A \equiv (-3,0)$, $B \equiv (4,-1)$, $C \equiv (5,2)$, is					
	a) $\frac{2}{\sqrt{10}}$	b) $\frac{4}{\sqrt{10}}$	c) $\frac{11}{\sqrt{10}}$	d) $\frac{22}{\sqrt{10}}$	
	· √10	· √10	· √10	√10	

a) $\frac{30}{51}$

b) $\frac{4}{7}$

c) $\frac{7}{4}$

d) $\frac{30}{91}$

11. A pole stands at the centre of a rectangular field and it subtends angles of 15° and 45° at the mid points of the side of the field. If the length of its diagonal is 1200 m, then the height of flag staff is

a) 400 m

b) 200 m

c) $300\sqrt{2+\sqrt{3}}$ m

d) $300\sqrt{2} - \sqrt{3}$ m

12. What is the equation of the locus a point which moves such that 4 times its distance from the x-axis is the square of its distance from the origin?

a) $x^2 - v^2 - 4v = 0$

b) $x^2 + y^2 - 4|y| = 0$ c) $x^2 + y^2 - 4x = 0$ d) $x^2 + y^2 - 4|x| = 0$

13. A person standing on the bank of a river, observe that the angle of elevation of the top of a tree on the opposite bank of the river is 60° and when he retries 40m a way from the tree the angle of elevation become 30°. The breadth of the river is

a) 20 m

b) 30 m

c) 40 m

d) 60 m

14. There exist a \triangle *ABC* satisfying

a) $\tan A + \tan B + \tan C = 0$

b) $\frac{\sin A}{2} = \frac{\sin B}{3} = \frac{\sin C}{1}$

 $\sin A + \sin B = -\left(\frac{\sqrt{3}+1}{2\sqrt{2}}\right)\cos A\cos B$

 $= \frac{\sqrt{3}}{4} = \sin A \sin B$

d) $(a + b)^2 = c^2 + ab$ and $\sqrt{2} (\sin A + \cos A) = \sqrt{3}$

15. From a point a meters above a lake the angle of elevation of a cloud is α and the angle of depression of its reflection is β . The height of the cloud is

a) $\frac{a\sin(\alpha+\beta)}{\sin(\alpha+\beta)}$ m

b) $\frac{a\sin(\alpha+\beta)}{\sin(\beta-\alpha)}$ m

c) $\frac{a\sin(\beta-\alpha)}{\sin(\alpha+\beta)}$

d) None of these

16. The orthocentre of the triangle formed by (0,0), (8,0), (4,6) is

a) $(4, \frac{8}{3})$

b) (3, 4)c)

(4,3)d)

(-3,4)

17. The x-coordinate of the incentre of the triangle where the mid point of the sides are (0, 1), (1, 1) and (1, 0), is

a) $2 + \sqrt{2}$

b) $1 + \sqrt{2}$

c) $2 - \sqrt{2}$

d) $1 - \sqrt{2}$

18. The locus of the point (x, y) which is equidistant from the points (a + b, b - a) and (a - b, a + b) is

a) ax = by

b) ax + by = 0

c) bx + ay = 0

d) bx - ay = 0

19. If the sum of the distances from two perpendicular lines in a plane is 1, then its locus is

a) A square

b) A circle

c) A straight line

d) Two intersecting lines

20. A tower of x metres high, has a flagstaff at its top. The tower and the flagstaff subtend equal angles at a point distant y metres from the foot of the tower. Then the length of the flagstaff (in meters), is

a) $\frac{y(x^2-y^2)}{(x^2+y^2)}$

b) $\frac{x(y^2+x^2)}{(y^2-x^2)}$

c) $\frac{x(x^2+y^2)}{(x^2-y^2)}$