

l = 2(d-subshell) $m_1 = -2(d_{xy} \text{ orbital})$ $s = +\frac{1}{2}(\uparrow)$ Hence, electron belongs to 4d-orbital. 16 (d) The four lobes of $d_{x^2-y^2}$ orbital are lying along x and y axes, while the two lobes of d_{z^2} orbital are lying along *z*-axis, and contain a ring of negative charge surrounding the nucleus in *xy* plane 2s orbitals has one spherical node, where electron density is zero *p*-orbital have direction character $\text{Orbital} \longrightarrow p_z \quad p_x \quad p_y$ $m \rightarrow 0 \pm 1 \pm 1$ Nodal plane $\rightarrow xy \quad yz \quad zx$ 17 (c) d_{xy} orbital lies at 45° angle in between *x*-and *y*-axes. 18 (d) According to Pauli exclusion principle. 19 (b) $E = \frac{hc}{\lambda}$. 20 (d) Cu has configuration $[Ar]3d^{10}, 4s^{1}$; the two electrons are lost, one from $4s^{1}$ and one from $3d^{10}$.

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	C	В	В	D	С	D	D	В	В	В	
	3.105						2				
Q.	11	12	13	14	15	16	17	18	19	20	
A.	A	D	С	В	С	D	C	D	В	D	6

COACHING