







:.

## Smart DPPs

12

(a) The dimension of  $y = \frac{e^2}{4\pi\epsilon_0 hc}$ Putting the dimensions of [e] = [Q] = [AT]  $[\epsilon_0] = [M^{-1}L^{-3}T^4A^2], h = [ML^2T^{-1}], c = [LT^{-1}]$   $y = \frac{[A^2T^2]}{[M^{-1}L^{-3}T^4A^2][ML^2T^{-1}][LT^{-1}]}$   $y = [M^0L^0T^0]$ (b)

## 13

Volume  $V = l \times b \times t$ = 12 × 6 × 2.45 = 176.4 cm<sup>3</sup>  $V = 1.764 \times 10^2$  cm<sup>3</sup>

 $[h] = [ML^2T^{-1}]$ 

Since, the minimum number of significant figure is one in breadth, hence volume will also contain only one significant figure. Hence,  $V = 2 \times 10^2 cm^3$ 

## 14

(d)

Percentage error in  $A = \left(2\frac{\Delta a}{a} + 3\frac{\Delta b}{b} + \frac{\Delta c}{c} + \frac{1}{2}\frac{\Delta d}{d}\right) \times 100\%$  $= 2 \times 1 + 3 \times 3 + 2 + \frac{1}{2} \times 2$ = 2 + 9 + 2 + 1 = 14%(a) 16 The unit of  $\frac{1}{2}\varepsilon E^2 = \frac{C^2}{Nm^2} \left(\frac{N}{C}\right)^2$ =  $\frac{C^2}{Nm^2} \frac{N^2}{C^2} = \frac{N}{m^2} = \frac{Nm}{m^3}$  $=\frac{J}{m^3}=$ energy density 17 (d)  $v = at + bt^2$  $[v] = [bt^2] \text{ or } LT^{-1} = bT^2 \Rightarrow [b] = [LT^{-3}]$ 18 (b)  $6 \times 10^{-5} = 60 \times 10^{-6} = 60$  microns 19 (b) Surface tension =  $\frac{\text{Force}}{\text{Length}} = \frac{newton/metre}{newton/metre}$ G 20 (d)  $C = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \Rightarrow \frac{1}{\mu_0 \varepsilon_0} = c^2 = [L^2 T^{-2}]$ 



| ANSWER-KEY |    |    |    |    |    |    |    |    |    |    |
|------------|----|----|----|----|----|----|----|----|----|----|
| Q.         | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| Α.         | В  | D  | D  | В  | D  | В  | D  | С  | С  | D  |
|            |    |    |    |    |    |    |    |    |    |    |
| Q.         | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| Α.         | С  | А  | В  | D  | А  | А  | D  | В  | В  | D  |
|            |    |    |    |    |    |    |    |    |    |    |

## SMARTLEARN COACHING