

CLASS : XIth DATE :

(c)

Solutions

SUBJECT : MATHS DPP NO. :3

Topic :-MATHEMATICAL REASONING

1

We know that the contrapositive of $p \rightarrow q$ is $\sim q \rightarrow \sim p$. Therefore, contrapositive of $(\sim p \land q) \rightarrow \sim r$ is $r \rightarrow \sim (\sim p \land q)$ or, $r \rightarrow p \lor \sim q$ (d)

2

p	q	~ <i>p</i>	$\sim p \land q$	$q \rightarrow p$	$\sim (q \rightarrow p)$
Т	Т	F	F	Т	F
Т	F	F	F	Т	F
F	Т	Т	Т	F	Т
F	F	Т	F	Т	F

From the table

 $\sim p \land q \equiv \sim (q \rightarrow p)$ (b)

(c)

(a)

(b)

Clearly, $(p \land q) \land r \cong p \land (q \land r)$

4

3

The symbolic form of given statement is $\sim (p \lor q)$

5

 $(p \land q) \land (\sim (p \lor q))$ $\cong (p \land q) \land (\sim p \land \sim q)$ $\cong q \land (p \land \sim p) \land \sim q$ $\cong q \land c \land \sim \cong c$

So, statement in option (a) is a contradiction

8

p	q	~ p	$\sim q$	р	$\sim p$	(<i>p</i>	
	2000			$\wedge \sim q$	$\wedge q$	$\wedge \sim q)$	
						Λ	
- 1	6	- /				(~ <i>p</i>	
	1			V.		$\wedge q$)	
Т	Т	F	F	F	F	F	
Т	F	F	Т	Т	F	F	
F	Т	Т	F	F	Т	F	
F	F	Т	Т	F	F	F	

It is clear from, the table that $(p \land \neg q) \land (\neg p \land q)$ is a contradiction. **(d)**

10

Since *p* is true and *q* is false

 $\therefore p \rightarrow q$ has truth value *F*

Statement r has truth value T

 $\div (p \to q) \wedge r$ has truth value F. Also, $(p \to q) \wedge \sim r$ has truth value F

 $p \land q$ has truth value F and $p \lor r$ has truth value T

 \therefore $(p \land q) \land (p \lor r)$ has truth value *F*

As $p \wedge r$ has truth value *T*. Therefore, $q \rightarrow (p \wedge r)$ has truth value *T*

11	(b)
	Dual of $(x' \lor y')' = x \land y$ is $(x' \land y') = x \lor y$
13	(a)
	We have,
	$(\sim p \lor \sim q) \lor (p \lor \sim q) = \sim p \lor (\sim q \lor (p \lor \sim q))$
	$= \sim p \lor (p \lor \sim q) = (\sim p \lor p) \lor \sim q = t \lor \sim q = t$
14	(b)
	$\sim (p \lor q) \lor (\sim p \land q)$
	$= (m \wedge m \wedge m) \setminus (m \wedge m)$

 $\equiv (\sim p \land \sim q) \lor (\sim p \land q)$ $\equiv \sim p \land (\sim q \lor q)$

$$\equiv \sim p$$

(d) 15

(~)									
p	q	$\sim p$	$\sim q$	$p \lor$	(~ <i>p</i>)	$p \lor q$	$\sim (p \lor q)$	(~ <i>p</i>)	$(p \lor q)$
				(~ <i>q</i>)	$\wedge q$			V	V
								(~ q)	(~ <i>p</i>)
Т	Т	F	F	Т	F	Т	F	F	Т
F	Т	Т	F	F	Т	Т	F	Т	Т
Т	F	F	Т	Т	F	Т	F	Т	Т
F	F	Т	Т	Т	F	F	Т	Т	Т

It is clear from the table that columns 8 and 9 are not equal, ie, $\sim (p \lor q)$ is not equivalent to $(\sim p) \lor (\sim q)$. Hence, option (e) is false statement.

16

(c)			
р	q	$p \leftrightarrow q$	$\sim [p \leftrightarrow q]$
Т	Т	Т	F
Т	F	F	Т
F	Т	F	Т
F	F	Т	F

It is clear from the table that, it is neither tautology nor contradiction.

19

(c)

Consider the following statements:

p : We control the population growth

q : We become prosper

The given statement is $p \rightarrow q$ and its negation is $p \wedge \sim q$

i.e. We control population but we donot become prosper (c)

20

Mathematics is interestring is not a proposition.

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
А.	С	D	В	С	А	С	D	В	А	D
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	D	А	В	D	С	В	С	С	С