

MAHESH SIR'S NOTES - 7798364224

MATHS BOOKLET FOR JEE (MAINS & ADVANCE) & BOARDS

India's First Colour Smart Notes

Sets

1 SETS

A set is a collection of well defined distinct objects i.e. the objects follow a given rule or rules. If we say that we have a collection of short students in a class, then this collection is not a set as short student is not well defined. If however, we say that we have a collection of students whose heights is less then 5 feet, then it represent a set.

Examples:

1. $A = \{1, 4, 5, 4, 8\}$, the elements of this collection are distinguishable but not distinct, hence *A* is not a set.

2. Let A = collection of all vowels in English alphabates, then $A = \{a, e, i, o, u\}$. Hence elements of *A* are distinguishable as well as distinct, then *A* is a set.

- 3. The collection of all positive integers is a set.
- 4. The collection of all students of IIT (Delhi) is a set.

Some standard notation for some special sets:

- 1. The set of all natural number i.e., the set of all positive integers, is denoted by *N*.
- 2. The set of all integer number is denoted by *I* or *Z*.
- 3. The set of rational number is denoted by *Q*.
- 4. The set of all irrational number is denoted by Q'.
- 5. The set of all real number is denoted by *R*.

- 6. The set of all positive number is denoted by R^+ . (zero is not included)
- 7. The set of all negative real number is denoted by R^- . (zero is not included)
- 8. The set of complex number is denoted by *C*.

1.1 REPRESENTATION OF SETS

• Tabular form or Roster form

In this method of describing a set, the elements of the set are listed separated by coma within braces.

Example: The set of prime number less then 10 can be described as {2, 3, 5, 7}

• Set Builder form or Rule method

In this method of describing a set, a variable x which stands for each element of the set is written under braces and then after giving a semicolor or oblique line the property or properties P(x) possessed by each element of set is written the braces itself.

Example1: The set *A* of all even natural number can be written as $A = \{2x : x \in N\}$

Example2: The set $A = \{1, 3, 5\}$ can be written as $A = \{x : x \text{ is an odd natural number } \leq 5\}$

1.2 FINITE AND INFINITE SETS

A set having finite number of elements is called a **finite set**.

Example: $A = \{1, 2, 3, 4\}$. A is a finite set as it contains 4 elements.

A set which is not a finite set is called an **infinite set**. Thus a set A is said to be an infinite set if the number of elements of set A is not finite.

Example: Let *A* = set of all points on a particular straight line.

1.3 CARDINAL NUMBER OF A FINITE SET

The number of elements in a finite set A is called the cardinal number of set A and is denoted by n(A)

Example: Let $A = \{1, 2, 3, 4, 5\}$, then n(A) = 5

1.4 EQUIVALENT SETS

Two finite sets *A* and *B* are said to be equivalent if they have the same cardinal number. Thus set *A* and *B* are equivalent iff n(A) = n(B).

If sets A and B are equivalent, we write $A \approx B$

Example: Let $A = \{1, 2, 3, 4, 5\}, B = \{a, e, i, o, u\}$

Here n(A) = n(B) = 5

Therefore, sets *A* and *B* are equivalent.

1.5 EQUAL SETS

Two set A and B are said to be equal set if each element of set A is an element of set B and each element of B is an element of set A. Thus two sets A and B are equal if they have exactly the same elements. The order in which the elements in the two sets have been written is immaterial.

If set A and B are equal we can write A = B

Example1: Let $A = \{1, 2, 3, 4, 5\}$, $B = \{x : x \in N \text{ and } 1 \le x \le 5\}$ Here *A* and *B* are equal.

2 DIFFERENT TYPES OF SETS

2.1 NULL SET (OR EMPTY SET OR VOID A SET)

A set having no element is called null set or empty set or void set. It is denoted by ϕ or { }. **Example:** The set of odd numbers divisible by 2.

2.2 SINGLETON SET

A set having single element is called a singleton set. It is represented by writing down the

element within the braces.

Example: {2}, {0}, { ϕ }.

2.3 UNIVERSAL SET

A set consisting of all possible elements which occur in the discussion is called a universal set and is denoted by U.

2.4 PAIR SET

A set having two elements is called a pair set.

Example: {1, 2}, {2, 0}.

2.5 SET OF SETS

A set *S* having all its elements as set is called a set of sets or a family of sets or a class of sets. **Example1:** $S = \{\{1, 2, 3\}, 3, \{4\}\}$ is not a set of sets as 3 is not a set.

Example2: $\{\phi\}$ is a singleton set of set having null set ϕ as its elements.

3 SUBSETS, SUPERSETS, PROPER SUBSETS

3.1 SUBSETS OF A SET

A set A is said to be a subset of a set *B* if each element of *A* is also an element of *B*. If *A* is a subset of set *B*, we write $A \subseteq B$

```
Thus, A \subseteq B \Leftrightarrow [x \in A \Rightarrow x \in B]
```

Example: Let $A = \{1, 2, 3\}, B = \{2, 3, 4, 1, 5\},$ then $A \subseteq B$.

The statement $A \subseteq B$ can also be expressed equivalently by writing $B \supseteq A$ (read '*B* is a superset of *A*')

If *A* is not a subset of *B* i.e., if there is an element in *A* which is not an element of *B*, then we write $A \not\subseteq B$ or $B \not\supseteq A$.

• Some important properties of subset

• Every set is its own subset.

```
Let A be any set ; x \in A \implies x \in A
Hence A \subseteq A
```

- Empty se<mark>t is</mark> a subset of each set.
- Let *A* and *B* be any two sets:
 - then $A = B \Leftrightarrow A \subseteq B$ and $B \subseteq A$
- Let *A*, *B*, *C* be three sets.
- If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

3.2 PROPER SUBSET OF A SET

A set *A* is said to be a proper subset of a set *B*, if *A* is a subset of *B* and $A \neq B$ i.e. if

Every element of *A* is an elements of *B* and *B* has at least one element which is not an element of *A*. This fact is expressed by writing $A \subset B$ or $B \supset A$.

If A is not a proper subset of *B*, then we write $A \not\subset B$.

Example: Let $A = \{1, 2, 3\}$ and $B = \{2, 3, 4, 1, 5\}$, then $A \subset B$ and $B \supset A$.

3.3 SUPERSET OF SETS

A set *A* is said to be a super set of set *B*, if *B* is a subset of *A* i.e., each elements of *B* is an elements of *A*. If *A* is a super set of *B*, then $A \supseteq B$.

Example: Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{2, 5, 4\}$.

Here *B* is a subset of *A*, therefore *A* is a superset of *B*.

3.4 POWER SET

The set or family of all the subsets of a given set A is said to be the power set of A and is denoted by P(A)

Example: If $A = \{1, 2\}$

 $P(A) = \{\phi, \{1\}, \{2\}, \{1, 2\}\}$

If A has n elements then P(A) has 2^n elements.

Illustration 1

Question :	List all the subsets and all the proper subsets of the set {-1, 0, 1}.					
Solution:	: Let $A = \{-1, 0, 1\}$.					
	Subset of <i>A</i> having no element is : ϕ					
	Subsets of A having one element are : $\{-1\}$, $\{0\}$, $\{1\}$.					
	Subsets of A having two elements are: $\{-1, 0\}$, $\{0, 1\}$, $\{-1, 1\}$.					
	Subsets of <i>A</i> having three elements are : {-1, 0, 1}.					
	Thus, all the subsets of A a <mark>re ϕ, {–1}, {0}, {1}, {–</mark> 1, 0}, {0, 1}, {–1, 1}, {–1, 0, 1}.					
	Proper subsets of A are ϕ , $\{-1\}$, $\{0\}$, $\{1\}$, $\{-1, 0\}$, $\{0, 1\}$, $\{-1, 1\}$.					
Illustrat	ion 2					
Titusti ai						
Question:	Make correct statements by filling the blanks by suitable symbols $\subseteq, \not\subseteq$.					
	(i) $\{x : x \text{ is an even natural number}\}$ $\{x : x \text{ is an integer}\}$					
	(ii){ <i>x</i> : <i>x</i> is a triangle in the plane} { <i>x</i> : <i>x</i> is a rectangle in the plane}					
	(iii){x : x is isosceles triangle in the plane} {x : x is an equilateral triangle in					
	the plane}					
	(iv) $a = \{a, \{b\}, c\}$					
	(v) $\{\{a\}\}_{\{a, \{b\}, c\}}$					
Solution:	(i) Since every even natural number is an integer, therefore,					
	$\{x : x \text{ is an even natural number}\} \subseteq \{x : x \text{ is an integer}\}.$					
	(ii) Since a triangle is not a rectangle, therefore					
	$\{x : x \text{ is a triangle in the plane } \not\subseteq \{x : x \text{ is a rectangle in the plane}\}.$					
	(iii)Since an isosceles triangle is not necessarily an equilateral triangle, therefore					
	$\{x : x \text{ is an isosceles triangle}\} \not\subseteq \{x : x \text{ is an equilateral triangle}\}.$					
	(iv) Since a is not a set, therefore, $a \not\subseteq \{a, \{b\}, c\}$.					
	(v) Since $\{\{a\}\}\$ is a set containing exactly one element $\{a\}$ and $\{a\}$ is not an element of					
	the set $\{a, \{b\}, c\}$, therefore, $\{\{a\}\} \not\subseteq \{a, \{b\}, c\}$.					

Illustration 3

Question: How many elements are in the set

 $\boldsymbol{\mathcal{A}}=\{\boldsymbol{\varphi},\;\{\boldsymbol{\varphi}\},\;\{\boldsymbol{\varphi},\;\{\boldsymbol{\varphi}\}\}\}$

 $B = \{x : x \text{ is even integer and } x < 19\}$

 $C = \{x : 0 \le x \le 1 \text{ and } x \text{ is a rational number}\}$

Smart Not

Solution: The elements of *A* are ϕ , { ϕ }, { ϕ }, { ϕ }}. So *A* has three elements.

$$B = \{x : x = 0, \pm 2, \pm 4, \pm 6, \dots \text{ and } x < 19\} = \{\dots, -4, -2, 0, 2, 4, 6, \dots, 18\}$$

... *B* is an infinite set.

C is also infinite set because 1, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, are all elements of *C*.

Important formulae/points

- The order in which the elements of a set are written is immaterial thus the set {1, 2,3} and {2, 1, 3} are same.
- Two sets A and B are equal if $x \in A \Rightarrow x \in B$ and $x \in B \Rightarrow x \in A$.
- The set {0} is not an empty set as it contains one element 0.
- The set $\{\phi\}$ is not an empty set as it contain one element ϕ .
- $A \subseteq B \Rightarrow P(A) \subseteq P(B)$
- If A has n elements then P(A) has 2^n elements.

VENN DIAGRAMS

Statements involving sets can be easily understood with pictorial representation of the sets. A set is represented by circle or a closed geometrical figure A, inside the universal set S, which is represented by a rectangular region. Elements of a set A are represented by points within the circle which represents A.

4.1 **OPERATION ON SETS**

In algebra of numbers, the operation of addition (+) when applied on two numbers gives a third number a + b. Likewise we discuss the operation union (\cup), intersection (\cap) and difference (-) applicable on any two sets.

Union of two sets

The union of two sets *A* and *B* is the set of all those elements which are either in *A* or in *B* or in both. This set is denoted by $A \cup B$ (read as 'A union B'). AL

$$\cup B = \{x : x \in A \text{ or } x \in B\}$$

 $x \in A \cup B \Leftrightarrow x \in A$ or $x \in B$

 $= \{x : x \in A \lor x \in B\}$ {\u03c6 denotes 'or'}

Also.

Example: Let $A = \{1, 2, 3\}$ and $B = \{2, 1, 5, 6\}$, then $A \cup B = \{1, 2, 3, 5, 6\}$.

The union of two sets can be represented by Venn diagram as shown in the figure below:

5 **DIFFERENCE AND COMPLEMENTS**

5.1 **DIFFERENCE OF TWO SETS**

The difference of two sets A and B is the set of all those elements of A which are not elements of *B*. It is denoted by A - B.

 $A-B = \{x : x \in A \text{ and } x \notin B\}$ thus

A – B can be represented by Venn diagram (shaded region) as below:

 $A \subseteq B$ nor $B \subseteq A$

Example: Let $A = \{1, 3, 5, 6, 7\}$; $B = \{2, 3, 4, 5\}$, then $A - B = \{1, 6, 7\}$; $B - A = \{2, 4\}$. **5.2 COMPLEMENT OF A SET**

The complement of a set A is a set of all those elements of universal set S which are not elements of A. It is denoted by A^c or A'.

$$A' = S - A$$

 $U' = \phi$

(ix) Involution Law (Law of double complementation)

• (A')' = A

•

7

SOME PRACTICAL APPLICATIONS OF SET THEORY

Here we shall study the use of set theory in practical problems.

The number of distinct elements of a finite set A is denoted by n(A).

Use the following results whichever is required

- (i) $n(A \cup B) = n(A) + n(B) n(A \cap B)$
- (ii) $n(A \cup B) = n(A B) + n(A \cap B) + n(B A)$
- (iii) $n(A \cup B) = n(A) + n(B A)$
- (iv) $n(A \cup B) = n(A) + n(B) \Leftrightarrow A \cap B = \phi$
- (v) $n(A) = n(A B) + n(A \cap B)$
- (vi) $n(B) = n(B-A) + n(A \cap B)$
- (vii) Number of elements belonging to exactly one of A and B = n(A-B) + n(B-A)

$$= n(A \cup B) - n(A \cap B) = n(A) + n(B) - 2n(A \cap B)$$

- (viii) Number of elements belonging to exactly two of *A*, *B* and *C* = $n(A \cap B) + n(B \cap C) + n(C \cap A) - 3n(A \cap B \cap C)$
- (ix) $n(A \cup B \cup C) = n(A) + n(B) + n(C) n(A \cap B) n(B \cap C) n(A \cap C) + n(A \cap B \cap C)$
- (x) Number of elements belonging to exactly one of A, B and C = $n(A) + n(B) + n(C) - 2n(A \cap B) - 2n(B \cap C) - 2n(A \cap C) + 3n(A \cap B \cap C)$

(xi)
$$n(A' \cap B') = n(S) - n(A \cup B) = n(A \cup B)'$$

(xii) $n(A' \cup B') = n(S) - n(A \cap B)$

Illustration 4

Question: If $A = \{1, 3, 5, 6, 7\}$, $B = \{2, 3, 6, 8\}$ and $C = \{1, 2, 3, 4\}$, then find (i) $A \cap B$ (ii) $A \cup B$ (iii) A - B (iv) B - A

Solution: (i) $A \cap B = \{x : x \in A \text{ and } x \in B\} = \{3, 6\}$ (ii) $A \cup B = \{x : x \in A \text{ or } x \in B\} = \{1, 2, 3, 5, 6, 7, 8\}$ (iii) $A - B = \{x : x \in A \text{ and } x \notin B\} = \{1, 5, 7\}$ (iv) $B - A = \{x : x \in B \text{ and } x \notin A\} = \{2, 8\}$

Illustration 5

Question: If universal set $S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and $A = \{1, 2, 3, 4\}$, $B = \{2, 3, 5, 6\}$, $C = \{2,3,7\}$, then find (i) A' (ii) (A-B)' (iii) B' - A' (iv) $A' \cap B$ (v) $A \cup B'$

(vi) $(A \cap C)'$. Solution: (i) $A' = \{x : x \in S \text{ and } x \notin A\} = \{0, 5, 6, 7, 8, 9\}$ (ii) $A - B = \{x : x \in A \text{ and } x \notin B\} = \{1, 4\}$ \therefore $(A-B)' = S - (A-B) = S - \{1, 4\} = \{0, 2, 3, 5, 6, 7, 8, 9\}$ (iii) $B' = S - B = S - \{2, 3, 5, 6\} = \{0, 1, 4, 7, 8, 9\}$ $A' = S - A = S - \{1, 2, 3, 4\} = \{0, 5, 6, 7, 8, 9\}$ $B' - A' = \{0, 1, 4, 7, 8, 9\} - \{0, 5, 6, 7, 8, 9\} = \{1, 4\}.$ (iv) $A' \cap B = \{0, 5, 6, 7, 8, 9\} \cap \{2, 3, 5, 6\} = \{5, 6\}$ (v) $A \cup B' = \{1, 2, 3, 4\} \cup \{0, 1, 4, 7, 8, 9\} = \{0, 1, 2, 3, 4, 7, 8, 9\}$ (vi) $A \cap C = \{1, 2, 3, 4\} \cap \{2, 3, 7\} = \{2, 3\}$ \therefore $(A \cap C)' = S - (A \cap C) = \{0, 1, 4, 5, 6, 7, 8, 9\}$ **Illustration 6** Question: If $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $A = \{1, 2, 4, 6, 8\}$, $B = \{1, 3, 5, 7, 8\}$, $C = \{2, 3, 4, 5, 6, 7\}$. Then verify that (i) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (ii) $(A \cup B)' = A' \cap B'$ Solution: $B \cup C = \{1, 2, 3, 4, 5, 6, 7, 8\}, A \cap B = \{1, 8\}, A \cap C = \{2, 4, 6\}$ (i) Now, $A \cap (B \cup C) = \{x : x \in A \text{ and } x \in B \cup C\} = \{1, 2, 4, 6, 8\}$ $(A \cap B) \cup (A \cap C) = \{1, 2, 4, 6, 8\}$ $\therefore A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$ (ii) $A \cup B = \{x : x \in A \text{ or } x \in B\} = \{1, 2, 3, 4, 5, 6, 7, 8\}$ $(A \cup B)' = \{x : x \in S \text{ and } x \notin A \cup B\} = \{9\}$ $A' = \{x : x \in S \text{ and } x \notin A\} = \{3, 5, 7, 9\}$ $B' = \{x : x \in S \text{ and } x \notin B\} = \{2, 4, 6, 9\}$ $A' \cap B' = \{9\}$ $\therefore \quad (A \cup B)' = A' \cap B'.$ **Illustration 7 Ouestion**: For any three sets A, B, C, prove the following (by using different laws on operations of sets): (i) A-B=B'-A'(ii) $(A \cup B) \cap (A \cup B') = A$ (iii) $A \cup B = (A - B) \cup (B - A) \cup (A \cap B)$ Solution: (i) $A-B=(A\cap B')=B'\cap A=B'\cap (A')'=B'-A'.$ $(A \cup B) \cap (A \cup B') = A \cup (B \cap B')$ [By distributive law] (ii) $= A \cup \phi = A$

(iii) $(A-B)\cup(B-A)\cup(A\cap B) = [(A\cup B)-(A\cap B)]\cup(A\cap B)]$ = $[(A\cup B)\cap(A\cap B)']\cup(A\cap B)$

 $= [(A \cup B) \cup (A \cap B)] \cap [(A \cap B)' \cup (A \cap B)]$ [By distributive law] = $(A \cup B) \cap S$, where *S* is the universal set = $A \cup B$.

Illustration 8

Question: In the given figure shade the following sets:

- (i) $A' \cap (B \cup C)$
- (ii) $A' \cap (C-B)$
- **Solution:** (i) Shaded region represents $A' \cap (B \cup C)$.

S

(ii) Shaded region represents $A' \cap (C - B)$

Illustration 9

Indstration		
Question:	In a group of 70 people, 37 like coffee, 52 like tea a	nd each person likes at least
	one of the two drinks. How many people like both	coffee and tea?
Solution:	Let <i>A</i> = set of people who like coffee	
	B = set of people who like tea	
	Given, $n(A \cup B) = 70$, $n(A) = 37$, $n(B) = 52$	
	To find $n(A \cap B)$	
	$n(A \cap B) = n(A) + n(B) - n(A \cup B) = 37 + 52 - 70 =$	= 19
Illustration		
Question:	If 53% of persons like oranges where 66% like ap	ples, what can be said about
	the percentage of persons who like both oranges a	nd apples?
Solution:	Let the total number of persons = 100 \Rightarrow	
$n(A \cup B) = 10$	0	
	Let $A = \{x : x \text{ like oranges}\}$	
	$B = \{x : x \text{ likes apples}\}$	$\begin{pmatrix} 24 & (39) & 37 \end{pmatrix}$
	Then $n(A) = 53$, $n(B) = 66$	
	$\therefore \qquad A \cap B = \{x : x \text{ likes oranges and apples both}\}$	A B
	Now, $n(A \cup B) = n(A) + n(B) - n(A \cap B)$	

$$n(A \cap B) = n(A) + n(B) - n(A \cup B) = 53 + 66 - 100 = 19$$

Illustration 11

Illustration 12

....

Question:

Let A has 3 elements and B has 6 elements. What can minimum number of elements in $A \cup B$?

Solution:

Clearly $A \cup B$ will contain minimum number of elements if $A \subseteq B$ or $B \subseteq A$ But n(A) = 3 < 6 = n(B) $\therefore \quad B \not\subseteq A \quad \therefore \quad A \subset B$ Thus $A \cup B = B \quad \therefore \quad n(A \cup B) = n(B) = 6$ Thus $A \cup B$ contains at least 6 elements

Question:	In a group of 2000 people, there are 1500, who can speak Hindi and 800, who
	can speak Bengali. How many can speak Hindi only? How many can speak
	Bengali only? How many can speak both Hindi and Bengali?
Solution:	Let $A = \{x : x \text{ speaks Hindi}\}, B = \{x : x \text{ speaks Bengali}\}$

,	$Det M = (X \cdot X \text{ opende finde)}, D = (X \cdot X \text{ opende Doligan})$
	Then A – B = { x : x speaks Hindi and can not speak Bengali}
	B – A = {x : x speaks Bengali and can not speak Hindi}
	$A \cap B = \{x : x \text{ speaks Hindi and Bengali both}\}$
	Given, $n(A) = 1500$, $n(B) = 800$, $n(A \cup B) = 2000$
	Now, $n(A \cap B) = n(A) + n(B) - n(A \cup B)$
	= 1500 + 800 - 2000 = 300

... Number of people speaking Hindi and Bengali both is 300 $n(A) = n(A - B) + n(A \cap B)$

$$\Rightarrow n(A-B) = n(A) - n(A \cap B) = 1500 - 300 = 1200$$

Also, $n(B - A) = n(B) - n(A \cap B) = 800 - 300 = 500$

Thus number of people speaking Hindi only = 1200

And number of people speaking Bengali only = 500

Illustration 13

Question: A class has 175 students. Following is the description showing the number of students studying one or more of the following subjects in this class. Mathematics 100, Physics 70, Chemistry 46; Physics and Chemistry 23;

Mathematics and Physics 30; Mathematics and Chemistry 28; Mathematics, Physics and Chemistry 18.

How many students are enrolled in Mathematics alone, Physics alone and Chemistry alone? Are there students who have not offered any of these three subjects.

 $\Leftrightarrow x \in (B - A) \text{ or } x \in A \cap B \qquad [from (i)]$

 \Leftrightarrow $(x \in B \text{ and } x \notin A)$ or *x* ∈ *B* \Leftrightarrow Hence A = BIf part: Let ...(ii) To prove [Now, $A - B = A - A = \phi$ [:: B = A]and $B - A = A - A = \phi$ $[\because B = A]$ $\therefore A - B = B - A$ Thus $A = B \implies A - B = B - A$ (iii) $x \in (A \cup B) - (A \cap B)$ $\Leftrightarrow x \in (A \cup B) \land x \notin (A \cap B)$ stands for 'and'] $\Leftrightarrow (x \in A \lor x \in B) \land (x \notin A \lor x \notin B) \quad [\lor \text{ stands for 'or'}]$ $\Leftrightarrow [(x \in A \lor x \in B) \land (x \notin A)] \lor [(x \in A \lor x \in B) \land x \notin B]$ $\iff [x \in B - A] \lor [x \in A - B]$ $\Leftrightarrow x \in (B-A) \cup (A-B)$ $\Leftrightarrow x \in (A - B) \cup (B - A) \qquad [\because A \cup B = B \cup A]$ Thus $(A \cup B) - (A \cap B) = (A - B) \cup (B - A)$ (iv) $x \in A \cup B \iff x \in A$ or $x \in B$ \Leftrightarrow $(x \in A \text{ and } x \notin B) \text{ or } (x \notin A \text{ and } x \in B) \text{ or } (x \in A \text{ or } x \in B)$ \Leftrightarrow x \in A - B or x \in B - A or x \in A \cap B $\Leftrightarrow x \in (A - B) \cup (B - A) \cup (A \cap B)$ $\therefore \quad A \cup B = (A - B) \cup (B - A) \cup (A \cap B)$

Important formulae/points

- $x \notin A \cup B \Leftrightarrow x \notin A$ and $x \notin B$
- If $A \subseteq B$, then $A \cup B = B$
- $x \in A^C \iff x \in S \text{ and } x \notin A$
- $n(A) = n(A-B) + n(A \cap B)$
- $n(B) = n(B-A) + n(A \cap B)$
- $n(A \cup B) = n(A B) + n(B A) + n(A \cap B)$

•
$$n(A' \cap B') = n(S) - n(A \cup B) = n(A \cup B)$$

•
$$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$$

- $n(B) = n(B-A) + n(A \cap B)$
- $n(A \cup B) = n(A) + n(B A)$

CARTESIAN PRODUCT OF SETS

Let *a* be an arbitrary element of a given set *A* i.e. $a \in A$ and *b* be an arbitrary element of *B* i.e. $b \in B$. Then the pair (a, b) is an ordered pair. Obviously $(a, b) \neq (b, a)$. The Cartesian product of two sets *A* and *B* is defined as the set of ordered pairs (a, b). The Cartesian product is denoted $A \times B$.

 \Rightarrow $A \times B = \{(a, b); a \in A, b \in B\}.$ In general $A \times B \neq B \times A$ and if *A* or *B* is a null set, then $A \times B = \phi$. Moreover, $n(A \times B) = n(A) \cdot n(B)$. (i) $A \times (B \cup C) = (A \times B) \cup (A \times C)$ Note : (ii) $A \times (B \cap C) = (A \times B) \cap (A \times C)$ (iii) $A \times (B - C) = (A \times B) - (A \times C)$ (iv) $(A-B) \times C = (A \times C) - (B \times C)$ (v) $(A \cap B) \times C = (A \times C) \cap (B \times C)$ (vi) $(A \cup B) \times C = (A \times C) \cup (B \times C)$ **Illustration 15** *Question:* If $A = \{2, 5\}$, $B = \{3, 4, 7\}$ and $C = \{3, 4, 8\}$ then evaluate $A \times B$, $B \times A$, $A \times A$ and verify that (i) $A \times (B - C) = (A \times B) - (A \times C)$ (ii) $A \times (B \cup C) = (A \times B) \cup (A \times C)$ Solution: Here $A \times B = \{2, 5\} \times \{3, 4, 7\} = \{(2, 3), (2, 4), (2, 7), (5, 3), (5, 4), (5, 7)\}$ $B \times A = \{3, 4, 7\} \times \{2, 5\} = \{(3, 2), (3, 5), (4, 2), (4, 5), (7, 2), (7, 5)\}$ and $A \times A = \{2, 5\} \times \{2, 5\} = \{(2, 2), (2, 5), (5, 2), (5, 5)\}.$ $A \times C = \{2, 5\} \times \{3, 4, 8\} = \{(2, 3), (2, 4), (2, 8), (5, 3), (5, 4), (5, 8)\}$ Also $B-C = \{3, 4, 7\} - \{3, 4, 8\} = \{7\}$ $\Rightarrow A \times (B - C) = \{2, 5\} \times \{7\} = \{(2, 7), (5, 7)\}$ $(A \times B) - (A \times C) = \{(2, 3), (2, 4), (2, 7), (5, 3), (5, 4), (5, 7)\}$ $-\{(2,3), (2,4), (2,8), (5,3), (5,4), (5,8)\} = \{(2,7), 5,7\} = A \times (B-C).$ To verify (ii), we write $B \cup C = \{3, 4, 7, 8\}$ $\Rightarrow A \times (B \cup C) = \{2, 5\} \times \{3, 4, 7, 8\}$ $= \{(2, 3), (2, 4), (2, 7), (2, 8), (5, 3), (5, 4), (5, 7), (5, 8)\}$ $(A \times B) \cup (A \times C) = \{(2, 3), (2, 4), (2, 7), (2, 8), (5, 3), (5, 4), (5, 7), (5, 8)\}$ and $= A \times (B \cup C)$

Important formulae/points

- The Cartesian product is denoted $A \times B \Rightarrow A \times B = \{(a, b); a \in A, b \in B\}$.
- The elements of A × B are also called 2-tuples.
- If $A = \phi$ or $B = \phi$ i.e. if at least one of A and B is an empty set, then $A \times B = \phi$.
- $A \times B \neq \phi \iff A \neq \phi \text{ and } B \neq \phi$
- $A \times B$ may or may not be equal to $B \times A$.
- $A \times B = B \times A$ if and only if A = B.

SMARTLEARN COACHING

EXERCISE

- **1.** Which of the following collections are sets? Justify your answer.
 - (i) The collection of all most talented writers of India.
 - (ii) The collection of all months of a year beginning with the letter J.
 - (iii) The collection of handsome boys of the world.
- **2.** Are the following sets equal?
 - (i) $A = \{x : x^3 8 = 0 \text{ and } x \text{ is a real number}\}.$ $B = \{x : x^2 + 7x - 18 = 0 \text{ and } x > 0\}.$
 - (ii) A = the set of letters in the word 'ALLOY'.B = the set of letters in the word 'LOYAL'.
- **3.** Which of the following sets are infinite sets?
 - (i) The set of all circles passing through the origin.
 - (ii) The set of prime numbers less than 99.
- 4. If $A = \{2, 3, 4, 5, 6\}$, $B = \{3, 4, 5, 6, 7\}$, $C = \{4, 5, 6, 7, 8\}$. Then find (i) $(A \cup B) \cap (A \cup C)$ (ii) $A - (B \cup C)$ (iii) A - (B - C) (iv) $(A \cap B) \cup (A \cap C)$
- **5.** For sets *A* and *B*, prove the following using the properties of sets:

(i)	$(A \cup B) - A = B - A$	(ii) $A \cup (B-A) = A \cup B$
(iii)	$A - (A - B) = B \Leftrightarrow B \subseteq A$	(iv) $A \cup (A \cap B) = A$
(v)	$(A \cap B) \cup (A - B) = A$	(vi) $(A \cup B) \cap (A \cup B') = A$

- 6. For sets *A*, *B* and *C*, prove the following using the properties of sets: (i) $A - (B - C) = (A - B) \cup (A \cap C)$ (ii) $(A - B) - C = A - (B \cup C)$ (iii) $A \cap (A \cup B) = A$
- **7.** For any three sets *A*, *B*, *C*, prove the following (by using different laws on operations of sets):

(i)
$$(A-B) \cup A = A$$

(ii) $(A-B) \cap (B-A) = \phi$
(iii) $A-(A-B) = A \cap B$
(iv) $A \cap (B-C) = (A \cap B) - (A \cap C)$

- 8. If *A* and *B* are two non-empty sets having *n* elements in common, then show that $A \times B$ and $B \times A$ have n^2 elements in common.
- 9. Find x and y, if (2x, x + y) = (6, 2).

10. If *A* and *B* are two sets such that n(A) = 17, n(B) = 23 and $n(A \cup B) = 38$, find $n(A \cap B)$.

- **11.** Use logical method to prove the following:
 - (i) For any set A, prove that (A')' = A.
 - (ii) For any two sets *A* and *B*, prove that $A \subseteq B \Leftrightarrow B' \subseteq A'$.
 - (iii) For any two set *A* and *B*, prove that $A B = \phi$ iff $A \subseteq B$.
- **12.** In a group of people, 50 speak both English and Hindi and 30 people speak English but not Hindi. All the people speak at least one of the two languages. How many people speak English?
- **13.** In a group of 1000 people, 750 can speak Hindi and 400 can speak Bengali. All the people speak at least one of the two languages. How many can speak Hindi only? How many can speak Bengali only? How many can speak both Hindi and Bengali?
- **14.** A college awarded 38 medals in Football, 15 in Basketball and 20 in Cricket. If these medals went to a total of 58 men and only three men got medals in all the three sports, how many received medals in exactly two of the three sports?
- **15.** In a survey of 25 students, it was found that 15 had taken mathematics, 12 had taken physics and 11 had taken chemistry, 5 had taken mathematics and chemistry, 9 had taken mathematics and physics, 4 had taken physics and chemistry and 3 had taken all three subjects. Find the number of students that had taken (i) only chemistry (ii) only mathematics (iii) only physics (iv) physics and chemistry but not mathematics (v) mathematics and physics but not chemistry (vi) only one of the subjects (vii) at least one of three subjects (viii) none of three subjects.
- 16. Out of 800 boys in a school, 224 played cricket, 240 played hockey and 336 played basketball. Of the total, 64 played both basketball and hockey, 80 played cricket and basketball and 40 played cricket and hockey, 24 played all the three games. Find the number of boys who did not play any game.
- **17.** If $A = \{x : x^2 5x + 6 = 0\}$, $B = \{2, 4\}$, $C = \{4, 5\}$, then find $A \times (B \cap C)$.
- **18.** If n(A) = 4, n(B) = 3, $n(A \times B \times C) = 24$, then find n(C).
- **19.** If $A = \{2, 3, 5\}, B = \{2, 5, 6\}$, then find $(A B) \times (A \cap B)$.
- **20.** Shade the following sets:

Smart Notes

(i)	$A' \cap B'$	
(iii)	$(A \cup B) \cap (A \cup C)$	

(ii) $A' \cup B'$ (iv) $(A \cap B) \cup (A \cap C)$

	ANSWERS TO EXERCISE
1.	(ii)
2.	(i) $A = B$ (ii) $A = B$
3.	(i) is infinite set
4.	(i) {2, 3, 4, 5, 6, 7} (ii) {2} (iii) {2, 4, 5, 6} (iv) {3, 4, 5, 6}
9.	x = 3, y = -1
10.	2
12.	
13.	The number of people speaking Hindi only = 600, Bengali only = 250, both Hindi and Bengali = 150
14.	Number of people who got medal in exactly two of the three sports = 9
15.	(i) 5 (ii) 4 (iii) 2 (iv) 1 (v) 6 (vi) 11 (viii) 23 (viii) 2

- **17.** {(2, 4), (3, 4)}
- **18.** 2
- **19.** {(3, 2), (3, 5)}

SMARTLEARN COACHING

	IMPORTANT PRACTICE QUESTION SERIES FOR IIT-JEE EXAM - 1
1.	Let <i>R</i> ₁ be a relation defined by
	$R_1 = \{(a, b) a \ge b, a, b \in R\}$. Then, R_1 is
	a) An equivalence relation on <i>R</i>
	b)Reflexive, transitive but not symmetric
	c) Symmetric, transitive but not reflexive
	d)Neither transitive not reflexive but symmetric
2.	On the set of human beings a relation <i>R</i> is defined as follows:
	" <i>aRb</i> iff <i>a</i> and <i>b</i> have the same brother". Then <i>R</i> is
	a) Only reflexive b) Only symmetric c) Only transitive d) Equivalence
3.	In a class of 35 students, 17 have taken Mathematics, 10 have taken Mathematics but n
	Economics. If each student has taken either Mathematics or Economics or both, then the
	number of students who have taken Economics but not Mathematics is
	a) 7 b) 25 c) 18 d) 32
4.	$\{n(n+1)(2n+1): n \in Z\} \subset$
	a) $\{6k : k \in Z\}$ b) $\{12k : k \in Z\}$ c) $\{18k : k \in Z\}$ d) $\{24k : k \in Z\}$
5.	If $A = \{1, 2, 3, 4, 5\}, B = \{2, 4, 6\}, C = \{3, 4, 6\}, \text{then } (A \cup B) \cap C \text{ is}$
	a) {3, 4, 6} b) {1, 2, 3} c) {1, 4, 3} d) None of these
6.	Let <i>A</i> be the set of all students in a school. A relation <i>R</i> is defined on <i>A</i> as follows:
	" <i>aRb</i> iff <i>a</i> and <i>b</i> have the same teacher"
	a) Reflexive b) Symmetric c) Transitive d) Equivalence
7.	If P is the set of all parallelograms, and T is the set of all trapeziums, then $P \cap T$ is
	a) P b) T c) ϕ d) None of these
3.	A and B are any two non-empty sets and A is proper subset of B. If $n(A) = 5$, then find
	minimum possible value of $n(A \Delta B)$
	a) Is 1
	b) Is 5
	c) Cannot be determined
	d)None of these
).	If $n(A) = 4$, $n(B) = 3$, $n(A \times B \times C) = 240$, then $n(C)$ is equal to
	a) 288 b) 1 c) 12 d) 2
L O .	In a class, 70 students wrote two tests viz;test-I and test-II. 50% of the students failed i
	and 40% of the students in test-II. How many students passed in both tests?
	a) 21 b) 7 c) 28 d) 14
11.	Let Z denote the set of all integers and $A = \{(a, b): a^2 + 3b^2 = 28, a, b \in Z\}$ and B
	$\{(a, b): a > b, a, b \in Z\}$. Then, the number of elements in $A \cap B$ is
	a) 2 b) 3 c) 4 d) 6
12.	Let L be the set of all straight lines in the Euclidean plane. Two lines l_1 and l_2 are said t
	related by the relation R iff l_1 is parallel to l_2 . Then, the relation R is not
	a) Reflexive b) Symmetric c) Transitive d) None of these
13.	Let <i>R</i> be a relation on the set <i>N</i> be defined by $\{(x, y) x, y \in N, 2x + y = 41\}$. Then, <i>R</i> is
	a) Reflexive b) Symmetric c) Transitive d) None of these
14.	In an office, every employee likes at least one of tea. coffee and milk. The number of
	employees who like only tea, only coffee, only milk and all the three are all equal. The r
	of employees who like only tea and coffee, only coffee and milk and only tea and milk a

of employees who like only tea and coffee, only coffee and milk and only tea and milk are equal and each is equal to the number of employees who like all the three. Then a possible

	value of the number of	employees in the office	is	Dor	
1 🗖	a) 65 Which of the following	b)90	C) 77	d)85	
15.	which of the following	b) 22		d) 16	
16	a) 20 The relation 'is subset.	of on the nower set P(() of a set 4 is	ujio	
10.	a) Symmetric	h) Anti-symmetric	c) Faujualence relation	d) None of these	
17	Let A and B be two nor	-empty subsets of a set	X such that A is not a si	r d f None of R Then	
17.	a) A is a subset of com	plement of <i>B</i>			
	b) <i>B</i> is a subset of <i>A</i>				
	c) Aand B are disjoint				
	d) A and the compleme	ent of <i>B</i> are non-disjoint			
18.	If A, B and C are three	sets such that $A \supset B \supset$	C , then $(A \cup B \cup C) - (A \cup B)$	$4 \cap B \cap C) =$	
	a) <i>A</i> – <i>B</i>	b) <i>B</i> – <i>C</i>	c) <i>A</i> – <i>C</i>	d) None of these	
19.	A survey shows that 63	3% of the Americans lik	e cheese whereas 76% l	ike apples. If <i>x</i> % of the	
	Americans like both ch	eese and apples, then			
	a) $x = 39$	b) $x = 63$	c) $39 \le x \le 63$	d) None of these	
20.	If $X = \{4^n - 3n - 1 : n\}$	$n \in N$ and $Y = \{9(n - 1)\}$	$(:n \in N)$, then $X \cup Y$ is	equal to	
~ 1	a) <i>X</i>	b)Y	c) N	d) None of these	
21.	Let $A = \{x: x \text{ is a multip}\}$	ble of 3} and $B = \{x: x\}$	a multiple of 5}. Then, A	$A \cap B$ is given by	
22	a) {3, 6, 9,}	b){5, 10, 15, 20,}	c) {15, 30, 45,}	d) None of these	
22.	If $n(A \times B) = 45$, then	n(A) cannot be	25	4) 0	
22	d) 15 In order that a relation	DJ1/ R defined on a nen om	CJD ntweet A is an equivaler	uj9	
23.	5. In order that a relation K defined on a non-empty set A is an equivalence relation, it is sufficient if P				
	a) Is reflective				
	h) Is symmetric				
	c) Is transitive				
	d) Possesses all the abo	ove three properties			
24.	For real numbers x and	d v. we write $xRv \Leftrightarrow x$ -	$-v + \sqrt{2}$ is an irrational	number. Then. the	
	relation R is			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	a) Reflexive	b)Symmetric	c) Transitive	d) None of these	
25.	In a class of 45 student	s, 22 can speak Hindi ai	nd 12 can speak English	only. The number of	
	students, who can spea	ak both Hindi and Englis	sh, is 💦 🦾 👘		
	a) 9	b)11	c) 23	d)17	
26.	A, B and C are three no	on-empty sets. If $A \subset B$ a	and $B \subset C$, then which o	of the following is true?	
~-	a) $B - A = C - B$	b) $A \cap B \cap C = B$	c) $A \cup B = B \cap C$	$d) A \cup B \cup C = A$	
27.	$x \in R: \frac{2x-1}{x^3+4x^2+3x} \in R$	equals			
		L) D (0 1 2)	-) D (0 1 2)	$d D = \begin{pmatrix} 0 & 1 & 2 & 1 \end{pmatrix}$	
	a) $K = \{0\}$	$DJK = \{0, 1, 3\}$	$CJR = \{0, -1, -3\}$	$a_{JR} = \{0, -1, -3, +\frac{1}{2}\}$	
28.	If <i>R</i> is a relation from a	ı finite set A having m el	ements to a finite set B	having <i>n</i> elements, then	
	the number of relation	s from A to B is			
	a) 2 ^{mn}	b) $2^{mn} - 1$	c) 2 <i>mn</i>	d) <i>mⁿ</i>	
29.	If $A = \{(x, y): y^2 = x; x\}$	$x, y \in R$ and			
	$B = \{(x, y) : y = x ; x, j\}$	$y \in R$ }, then			
	$aJA \cap B = \phi$				
	DJA (1 B IS a Singleton Set				
	$C_J A \cap B$ contains two $C_J A \cap B$ contains three	elements only			
	UTATED CONTAINS UNCE	EIGHIGHUS UHIV			

30.	Which of the following is an equivalence rela	ition?			
	a) Is father of b) Is less than	c) Is congruent to	d) Is an uncle of		
31.	31. From 50 students taking examinations in Mathematics, Physics and Chemistry, 37 passed				
Mathematics, 24 Physics and 43 Chemistry. At most 19 passed Mathematics and Ph					
	most 29 passed Mathematics and Chemistry	and at most 20 passed P	hysics and Chemistry.		
	The largest possible number that could have	passed all three examination	ations is		
	a) 11 b) 12	c) 13	d)14		
32.	Let <i>A</i> be the non-void set of the children in a	family. The relation 'x is	a brother of y' on A is		
	a) Reflexive b) Symmetric	c) Transitive	d)None of these		
33.	In a class of 30 pupils 12 take needls work. 1	6 take physics and 18 tal	ke history. If all the 30		
	students take at least one subject and no one	takes all three, then the	number of pupils taking		
	2 subjects is				
	a) 16 b) 6	c) 8	d)20		
34.	If <i>R</i> is a relation on a finite set having <i>n</i> elem	ents, then the number of	relations on A is		
	a) 2^n b) 2^{n^2}	c) n^2	d) n^n		
35	The void relation on a set A is	0,10	a) n		
55.	a) Reflexive				
	h)Symmetric and transitive				
	c) Reflexive and symmetric				
	d)Reflexive and transitive				
36	Suppose A_1 , A_2 , A_{ab} are thirty sets each ha	wing 5 elements and B_{\star}	B_{2} B_{1} are <i>n</i> sets each		
00.	with 3 elements, let		$\mathcal{D}_{2}, \dots, \mathcal{D}_{n}$ and \mathcal{D} become of the second s		
	1^{30}_{i} , $A_i = 1^n_{i}$, $B_i = S$ and each element of S	helongs to exactly 10 of t	the A_i 's and exactly 9 of		
	the R_{i} 's Then n is equal to	belongs to exactly 10 of	the m s and chactly s of		
	$h_j = b_j $	a) 4E	d) None of these		
27	d_{J} 115 UJ05 If A is a finite set having <i>n</i> elements then $D($	() 45 () has	u) None of these		
57.	If A is a limite set having <i>n</i> elements, then $r(n)$	c) n elements	d) None of these		
20	Lot A and R have 2 and 6 elements respective	oly What can be the min	imum number of		
50.	alomonts in ALL B2	ery. What can be the min			
	a) 3 $b)$ 6	c) 9	d) 18		
39	Let R be a reflexive relation on a set A and L	he the identity relation o	n 4 Then		
57.	$2R \subset I$ $B \subset I$	c) $R = I$	d) None of these		
40	If $A = A$ are sets such that $n(A_i) = i$	$+2 \wedge - \wedge - \wedge - \wedge$	$1 \text{and} O^{100} A = A$		
10.	then $n(A) = 0$	$+2, n_1 \subset n_2 \subset n_3 \ldots \subset r$	$h_{100} \text{ and } h_{i=3} h_i - h_i$		
	h(A) = h(A)		d) 6		
<i>1</i> .1	If A and R are two given sets then $A \cap (A \cap A)$	$R)^{c}$ is equal to	uju		
т1.	a) 4 b) B	c) D	$d A \cap B^{c}$		
12	If a set has 13 elements and R is a reflexive r	elation on A with n elem	ents then		
72.	(13 cm < 26) b) $0 < n < 26$	c) $13 < n < 160$	$d) 0 \leq n \leq 160$		
13	$a_{11} \leq n \leq 20$ $b_{10} \leq n \leq 20$ Let Y be the set of all engineering colleges in	$c_{J} = 10 \leq n \leq 109$	$u_{J} 0 \leq n \leq 109$		
чэ.	Y defined as two colleges are related iff they	are affiliated to the same	a_{111} a_{112} a_{121} a_{1		
	a) Only reflexive b) Only symmetric	c) Only transitive	d) Equivalence		
44	In the above question the number of familie	s which huy none of 4 R	and C is		
тт.	a) 4000 b) 3300	c) 4200	d) 5000		
45	If A and R are two sets then $A \cap (A \sqcup R)$ equ		uj 5000		
rJ.	a) A b) R	с) ф	d) None of these		
46	If $A = \{1,3,5,7,9,11,13,15,17\}$ $B = \{2,4, 18\}$	$\gamma = \gamma$ and N is the universal s	set, then $A' \cup ((A \cup B) \cap$		
	<i>B'</i>) is				
	- /				

b)*N* c) *B* d) none of these a A47. If $A = \{\phi, \{\phi\}\}$, then the power set of A is c) $\{\phi, \{\phi\}, \{\{\phi\}\}, A\}$ b) { ϕ , { ϕ }, *A*} d) None of these a)A 48. Let $A = \{(x, y) : y = e^x, x \in R\},\$ $B = \{(x, y): y = e^{-x}, x \in R\}$. Then, d) None of these c) $A \cup B = R^2$ a) $A \cap B = \phi$ b) $A \cap B \neq \phi$ 49. Let *L* denote the set of all straight lines in a plane. Let a relation *R* be defined by $\alpha R\beta \Leftrightarrow \alpha \perp$ $\beta, \alpha, \beta \in L$. Then *R* is a) Reflexive b)Symmetric c) Transitive d) None of these 50. If *A*, *B* and *C* are three sets such that $A \cap B = A \cap C$ and $A \cup B = A \cup C$, then b)B = Cc) $A \cap B = \Phi$ d)A = Ba) A = C51. Let $S = \{1, 2, 3, 4\}$. The total number of unordered pairs of disjoint subsets of S is equal to b)34 c) 42 d)41 a) 25 52. If $A = \{(x, y): x^2 + y^2 = 4; x, y \in R\}$ and $B = \{(x, y): x^2 + y^2 = 9; x, y \in R\}, \text{ then }$ b)B - A = Ba) $A - B = \phi$ c) $A \cap B \neq \phi$ d) $A \cap B = A$ 53. Let n(U) = 700, n(A) = 200, n(B) = 300 and $n(A \cap B) = 100$. Then, $n(A^c \cap B^c) = 100$. a) 400 b)600 c) 300 d)200 54. If $A = \left\{ \theta : \cos \theta > -\frac{1}{2}, 0 \le \theta \le \pi \right\}$ and $B = \left\{ \theta : \sin \theta > \frac{1}{2}, \frac{\pi}{3} \le \theta \le \pi \right\}$, then a) $A \cap B = \{\theta : \pi/3 \le \theta \le 2\pi/3\}$ b) $A \cap B = \{\theta : -\pi/3 \le \theta \le 2\pi/3\}$ c) $A \cup B = \{\theta: -5\pi/6 \le \theta \le 5\pi/6\}$ d) $A \cup B = \{\theta : 0 \le \theta \le \pi/6\}$ 55. In a set of ants in a locality, two ants are said to be related iff they walk on a same straight line, then the relation is a) Reflexive and symmetric b) Symmetric and transitive c) Reflexive and transitive d)Equivalence 56. If $A = \{1, 2, 3\}, B = \{a, b\}$, then $A \times B$ mapped A to B is a) {(1, a), (2, b), (3, b)} b){(1, b), (2, a)} c) {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)} d){(1, a), (2, a), (2, b), (3, b)} 57. If A_n is the set of first *n* prime numbers, then $\bigcup_{n=2}^{10} A_n =$ a) {2,3,5,7,11,13,17,19} b) {2,3,5,7,11,13,17,19,2c) {3,5} d {2,3} 58. If $A = \{4, 6, 10, 12\}$ and R is a relation defined on A as "two elements are related iff they have exactly one common factor other than 1". Then the relation *R* is a) Antisymmetric b)Only transitive c) Only symmetric d) Equivalence 59. If *R* is a relation from a set *A* to a set *B* and *S* is a relation from *B* to a set *C*, then the relation SoR c) Does not exist a) Is from A to C b) Is from C to A d) None of these 60. Let *n* be a fixed positive integer. Define a relation *R* on the set *Z* of integers by, $aRb \Leftrightarrow n \mid a - a$ b. Then, R is not a) Reflexive b)Symmetric c) Transitive d) None of these 61. If $n(A_i) = i + 1$ and $A_1 \subset A_2 \subset A_3 \subset \cdots \subset A_{99}$, then $n(\bigcup_{i=1}^{99} A_i) =$ b)98 a) 99 c) 100 d)101 62. Two finite sets have *m* and *n* elements. The total number of subsets of the first set is 56 more

24

MAHESH SIR'S NOTES - 7798364224

	than the total number of subsets of the second set. The values of <i>m</i> and <i>n</i> are
	a) $m = 7, n = 6$ b) $m = 6, n = 3$ c) $m = 5, n = 1$ d) $m = 8, n = 7$
63.	Let A be the set of all animals. A relation R is defined as "aRb iff a and b are in different
	zoological parks". Then <i>R</i> is
	a) Only reflexive b) Only symmetric c) Only transitive d) Equivalence
64.	Let X and Y be the sets of all positive divisors of 400 and 1000 respectively (including 1 and
	the number). Then, $n(X \cap Y)$ is equal to
	a) 4 b) 6 c) 8 d) 12
65.	Let <i>R</i> be a relation from a set <i>A</i> to a set <i>B</i> , then
	a) $R = A \cup B$ b) $R = A \cap B$ c) $R \subseteq A \times B$ d) $R \subseteq B \times A$
66.	If X and Y are two sets, then $X \cap (Y \cup X)'$ equals
	a) X b) Y c) ϕ d) None of these
67.	If $A = \{1, 2, 3, 4, 5, 6\}$, then how many subsets of A contain the elements 2, 3 and 5?
	a) 4 b) 8 c) 16 d) 32
68.	For any three sets A_1, A_2, A_3 , let $B_1 = A_1, B_2 = A_2 - A_1$ and $B_3 = A_3 - (A_1 \cup A_2)$, then which
	one of the following statement is always true
	a) $A_1 \cup A_2 \cup A_3 \supset B_1 \cup B_2 \cup B_3$
	$DJA_1 \cup A_2 \cup A_3 = B_1 \cup B_2 \cup B_3$
	$C J A_1 \cup A_2 \cup A_3 \subset B_1 \cup B_2 \cup B_3$
60	u) None of these
09.	n : There is at least one reflexive relation on A
	p. There is at least one remetric relation on A
	$q \cdot 1$ here is at least one symmetric relation on A a) n alone b) a alone c) Both n and a d) Neither n por a
70	In an election, two contestants A and B contested r^{0} of the total voters voted for A and
70.	(x + 20)% for B. If 20% of the voters did not vote then $x =$
	a) 30 b) 25 c) 40 d) 35
71.	Let $A = \{1, 2, 3, 4\}$, and let $R = \{(2, 2), (3, 3), (4, 4), (1, 2)\}$ be a relation on A. Then, R is
	a) Reflexive b) Symmetric c) Transitive d) None of these
72.	In a rehabilitation programme, a group of 50 families were assured new houses and
	compensation by the government. Number of families who got both is equal to the number of
	families who got neither of the two. The number of families who got new houses is 6 greater
	than the number of families who got compensation. How many families got houses?
	a) 22 b) 28 c) 23 d) 25
73.	Let \mathcal{U} be the universal set for sets A and B such that $n(A) = 200, n(B) = 300$ and $n(A \cap B) =$
	100. Then, $n(A' \cap B')$ is equal to 300, provided that $n(U)$ is equal to
	a) 600 b) 700 c) 800 d) 900
74.	An integer m is said to be related to another integer n if m is a multiple of n . Then, the relation
	IS a) Deflective and ensure strice
	a) Reflexive and symmetric
	b) Reflexive and transitive
	d) Equivalence relation
75	Three sets A B Care such that $A = B \cap C$ and $B = C \cap A$ then
75.	a) $A \subset B$ b) $A \supset B$ c) $A = B$ d) $A \subset B'$
76	Let R be a relation on the set N of natural numbers defined by $nRm \Leftrightarrow n$ is a factor of
70.	m(i, e, n m). Then, R is
	a) Reflexive and symmetric
	· · · · · · · · · · · · · · · · · · ·

b) Transitive and symmetric c) Equivalence d) Reflexive, transitive but not symmetric 77. If $aN = \{ax : x \in N\}$ and $bN \cap cN = dN$, where $b, c \in N$ are relatively prime, then a) d = bcb)c = bdc) b = cdd) None of these 78. In rule method the null set is represented by d){x : x = x} b)Φ a) { } c) { $x : x \neq x$ } 79. Let *A* be a set represented by the squares of natural number and *x*, *y* are any two elements of A. Then, c) $x + y \in A$ d) $\frac{x}{y} \in A$ a) $x - y \in A$ b) $xy \in A$ 80. Let $A_1, A_2, A_3, ..., A_{100}$ be 100 sets such that $n(A_i) = i + 1$ and $A_1 \subset A_2 \subset A_3 \subset ... \subset A_{100}$, then $\bigcup_{i=1}^{100} A_i$ contains... elements a)99 c) 101 b)100 d)102 81. In a certain town 25% families own a cell phone, 15% families own a scooter and 65% families own neither a cell phone nor a scooter. If 1500 families own both a cell phone and a scooter, then the total number of families in the town is a) 10000 b)20000 c) 30000 d)40000 82. If *A*, *B* and *C* are three non-empty sets such that any two of them are disjoint, then $(A \cup B \cup C) \cap (A \cap B \cap C) =$ a) Ab)*B* c) C d) ϕ 83. If $R = \{(a, b): a + b = 4\}$ is a relation on N, then R is b)Symmetric c) Antisymmetric a) Reflexive d)Transitive 84. The shaded region in the figure represents \overline{U} b) $A \cup B$ c) B - Ad) $(A - B) \cup (B - A)$ a) $A \cap B$ 85. Let $X = \{1, 2, 3, 4, 5\}$ and $Y = \{1, 3, 5, 7, 9\}$. Which of the following is/are not relations from X to Y? a) $R_1 = \{(x, y) | y = 2 + x, x \in X, y \in Y\}$ b) $R_2 = \{(1,1), (2,1), (3,3), (4,3), (5,5)\}$ c) $R_3 = \{(1,1), (1,3), (3,5), (3,7), (5,7)\}$ d) $R_4 = \{(1,3), (2,5), (2,4), (7,9)\}$ 86. Given the relation $R = \{(1,2), (2,3)\}$ on the set $A = \{1,2,3\}$, the minimum number of ordered pairs which when added to *R* make it an equivalence relation is a) 5 d)8 b)6 c) 7 87. If sets *A* and *B* are defined as $A = \left\{ (x, y) : y = \frac{1}{x}, 0 \neq x \in R \right\},\$ $B = \{(x, y) : y = -x, x \in R\}$, then b) $A \cap B = B$ c) $A \cap B = \phi$ d) None of these a) $A \cap B = A$ 88. Let *R* be an equivalence relation on a finite set *A* having *n* elements. Then, the number of ordered pairs in R is a) Less than *n* b) Greater than or equal to n c) Less than or equal to *n*

26

5			Smar	t Notes
COACI				
d)Noi	e of these			
89. If A ₁ o	$= A_2 \subset A_3 \subset \cdots \subset A_5$	$_{0}$ and $n(A_{i}) = i - 1$,	then $n(\bigcap_{i=11}^{50} A_i) =$	
a) 49	b)	50	c) 11	d)10
90. If <i>aN</i>	$= \{ax : x \in N\}$ and b	$N \cap cN = dN$, where	$b, c \in N$ then	
a) <i>d</i> =	bc b)	c = bd	c) $b = cd$	d) None of these
91. <i>X</i> is the	e set of all residents	in a colony and <i>R</i> is	a relation defined on X a	as follows:
"Two	persons are related i	ff they speak the san	ne language"	
The r	elation R is			
2) Onl	v symmetric			

90. If $aN = \{ax : x \in N\}$ and $bN \cap cN$ a) d = bcb)c = bd91. *X* is the set of all residents in a co "Two persons are related iff they The relation R is a) Only symmetric b) Only reflexive c) Both symmetric and reflexive but not transitive d)Equivalence 92. If *S* is a set with 10 elements and $A = \{(x, y) : x, y \in S, x \neq y\}$, then the number of elements in A is a) 100 b)90 c) 50 d)45 93. Let $A = \{ONGC, BHEL, SAIL, GAIL, IOCL\}$ and R be a relation defined as "two elements of A are related if they share exactly one letter". The relation R is b)Only transitive a) Anti-symmetric c) Only symmetric d) Equivalence 94. The finite sets *A* and *B* have *m* and *n* elements respectively. if the total number of subsets of *A* is 112 more than the total number of subsets of *B*, then the volume of *m* is a)7 b)9 c) 10 d)12 95. Let $R = \{(a, a)\}$ be a relation on a set A. Then, R is a) Symmetric b)Antisymmetric c) Symmetric and antisymmetric d) Neither symmetric nor antisymmetric 96. If $A = \{p: p = \frac{(n+2)(2n^5+3n^4+4n^3+5n^2+6)}{2n^5+3n^4+4n^3+5n^2+6}\}$ $n, p \in \mathbb{Z}^+$ then the number of elements in the set A, is $n^2 + 2n$ a) 2 b)3 c)4 d)6 97. If $A = \{x : x \text{ is a multiple of } 3\}$ and, $B = \{x : x \text{ is a multiple of 5}\}, \text{ then } A - B \text{ is}$ c) $\overline{A} \cap \overline{B}$ d) $\overline{A \cap B}$ a) $\overline{A} \cap B$ b) $A \cap \overline{B}$ 98. An investigator interviewed 100 students to determine the performance of three drinks milk, coffee and tea. The investigator reported that 10 students take all three drinks milk, coffee and tea; 20 students take milk and coffee, 30 students take coffee and tea, 25 students take mile and tea, 12 students take milk only, 5 students take coffee only and 8 students take tea only. Then, the number of students who did not take any of the three drinks, is a) 10 b)20 c) 25 d)30 99. Consider the following statements: (i) Every reflexive relation is antisymmetric (ii) Every symmetric relation is antisymmetric Which one among (i) and (ii) is true? a) (i) alone is true b) (ii) alone is true c) Both (i) and (ii) true d)Neither (i) and (ii) is true 100 Given n(U) = 20, n(A) = 12, n(B) = 9, $n(A \cap B) = 4$, where U is the universal set, A and B are subsets of U, then $n[(A \cup B)^c]$ equals to a) 10 b)9 d)3 c) 11

27

MAHESH SIR'S NOTES - 7798364224

101 Let Z denote the set of integers, then $\{x \in Z : |x - 3| < 4\}n\{x \in Z : |x - 4| < 5\} =$ b){-1,0,1,2,3,4,5} a) $\{-1,0,1,2,3,4\}$ c) {0,1,2,3,4,5,6} d) {-1,0,1,2,3,5,6,7,8,9} 102 Let *R* be a reflexive relation on a finite set *A* having *n* elements, and let there be *m* ordered pairs in *R*. Then, b) $m \leq n$ c) m = nd) None of these a) $m \ge n$ 103 Let $A = \{1, 2, 3\}, B = \{3, 4\}, C = \{4, 5, 6\}$. Then, $A \cup (B \cap C)$ is a) {3} 104 If $A = \{(x, y) : y = \frac{4}{x}, x \neq 0\}$ and c) {1, 2, 5, 6} d) $\{1, 2, 3, 4, 5, 6\}$ $B = \{(x, y): x^2 + y^2 = 8, x, y \in R\}, \text{ then }$ a) $A \cap B = \phi$ b) $A \cap B$ contains one point only c) $A \cap B$ contains two points only d) $A \cap B$ contains 4 points only 105 If $R = \{(a, b): |a + b| = a + b\}$ is a relation defined on a set $\{-1, 0, 1\}$, then R is a) Reflexive b)Symmetric d)Transitive c) Anti symmetric 106 If $n(A \cap B) = 5$, $n(A \cap C) = 7$ and $n(A \cap B \cap C) = 3$, then the minimum possible value of $n(B \cap C)$ is a) 0 b)1 c) 3 d)2 107 The relation $R = \{(1,3), (3,5)\}$ is defined on the set with minimum number of elements of natural numbers. The minimum number of elements to be included in *R* so that *R* is an equivalence relation, is a) 5 b)6 c) 7 d)8 108 If $A = \{1, 2, 3\}$, then the relation $R = \{(1, 1), (2, 2), (3, 1), (1, 3)\}$ is b)Symmetric c) Transitive d) Equivalence a) Reflexive 109 Let R be a relation on a set A such that $R = R^{-1}$, then R is d) None of these a) Reflexive b) Symmetric c) Transitive 110 In Q.No. 6, $\bigcap_{n=3}^{10} A_n =$ c) {2,3,5,7,11,13,17} a) $\{3,5,7,11,13,17,19\}$ b) $\{2,3,5\}$ d) $\{3,5,7\}$ 111 The number of elements in the set { $(a, b): 2a^2 + 3b^2 = 35, a, b \in Z$ }, where Z is the set of all integers, is b)4 a) 2 c) 8 d)12 112 If $A = \{a, b, c\}, B = \{b, c, d\}$ and $C = \{a, d, c\}$, then $(A - B) \times (B \cap C)$ is equal to a) {(a, c), (a, d)} b){(a, b), (c, d)} c) {(c, a), (d, a)} d){(a, c), (a, d), (b, d)} 113 A class has 175 students. The following data shows the number of students opting one or more subjects. Mathematics 100; Physics 70; Chemistry 40; Mathematics and Physics 30; Mathematics and Chemistry 28; Physics and Chemistry 23; Mathematics, Physics and Chemistry 18. Hoe many students have offered Mathematics alone? a) 35 b)48 c) 60 d)22 114 If $A = \{1, 2, 3\}, B\{3, 4\}, C\{4, 5, 6\}$. Then, $A \cup (B \cap C)$ is a) {1, 2} b){φ} c) {4, 5} d) $\{1, 2, 3, 4\}$

MAHESH SIR'S NOTES - 7798364224

115 If $A \subseteq B$, then $B \cup A$ is equal to

a) $B \cap A$ d) None of these bc) *B* 116 If n(u) = 100, n(A) = 50, n(B) = 20 and $n(A \cap B) = 10$, then $n\{(A \cup B)^c\}$ b)30 c) 40 d)20 a) 60 117 If *A* is a non-empty set, then which of the following is false? *p* : Every reflexive relation is a symmetric relation *q* : Every antisymmetric relation is reflexive Which of the following is/are true? a) *p* alone c) Both *p* and *q* b)*q* alone d) Neither p nor q 118 Two points *P* and *Q* in a plane are related if OP = OQ, where *O* is a fixed point. This relation is a) Partial order relation b) Equivalence relation c) Reflexive but not symmetric d) Reflexive but not transitive 119 In a city 20% of the population travels by car, 50% travels by bus and 10% travels by both car and bus. Then, persons travelling by car or bus is a)80% b)40% c) 60% d)70% 120 If $n(A \cap B = 10, n(B \cap C) = 20)$ and $n(A \cap C) = 30$, then the greatest possible value of $n(A \cap C)$ $B \cap C$) is a) 15 b)20 c) 10 d)4 121 If S is the set of squares and R is the set of rectangles, then $(S \cup R) - (S \cap S)$ is a) S b)*R* c) Set of squares but not rectangles d)Set of rectangles but not squares 122 Let X be a family of sets and R be a relation on X defined by 'A is disjoint from B'. Then, R is a) Reflexive b)Symmetric d) Transitive c) Antisymmetric 123 If $A = \{x, y\}$, then the power set of A is a) $\{x^y, y^x\}$ b) { ϕ , x, y} c) { ϕ , {x}, {2y}} d) { ϕ , {x}, {y}, {x, y}} 124 In a town of 10,000 familiesit was found that 40% families buy newspaper A, 20% families buy newspaper *B* and 10% families buy newspaper *C*, 5% families buy *A* and *B*, 3% buy *B* and C and 4% buy A and C. If 2% families buy all the three newspapers, then the number of families which buy A only is a) 3100 b)3300 d)1400 c) 2900 125 Let *R* and *S* be two equivalence relations on a set *A*. Then, a) $R \cup S$ is an equivalence relation on A b) $R \cap S$ is an equivalence relation on Ac) R - S is an equivalence relation on A d)None of these

126 Which of the following is true?

a) $A \cap \phi = A$ b) $A \cap \phi = \phi$ c) $A \cap \phi = U$ d) $A \cap \phi = A'$ 127 Let $A = \{p, q, r\}$. Which of the following is not an equivalence relation on A? a) $R_1 = \{(p,q), (q,r), (p,r), (p,p)\}$ b) $R_2 = \{(r,q), (r,p), (r,r), (q,q)\}$ c) $R_3 = \{(p, p), (q, q), (r, r), (p, q)\}$ d)None of these 128 Let $A = \{1, 2, 3, 4\}, B = \{2, 4, 6\}$. Then, the number of sets C such that $A \cap B \subseteq C \subseteq A \cup B$ is a)6 d)10 b)9 ¹²⁹ If $A = \{p \in N : p \text{ is } a \text{ prime and } p = \frac{7n^2 + 3n + 3}{n} \text{ for some} n \in N\}$, then the number of elements in the set A, is b)2 d)4 a) 1 c) 3 130 Let $Y = \{1, 2, 3, 4, 5\}, A\{1, 2\}, B = \{3, 4, 5\}$ and ϕ denotes null set. If $(A \times B)$ denotes cartesian product of the sets *A* and *B*; then $(Y \times A) \cap (Y \times B)$ is b)*A* a) Yc) *B* d) ϕ 131 If n(A) denotes the number of elements in the set A and if n(A) = 4, n(B) = 5 and $n(A \cap B) = 5$ 3, then $n[(A \times B) \cap (B \times A)]$ is equal to a)8 b)9 c) 10 d)11 132 Universal set, $U = \{x: x^5 - 6x^4 + 11x^3 - 6x^2 = 0\}$ And $A = \{x: x^2 - 5x + 6 = 0\}$ $B = \{x: x^2 - 3x + 2 = 0\}$ Then, $(A \cap B)'$ is equal to a) $\{1, 3\}$ b){1, 2, 3} c) {0, 1, 3} d){0, 1, 2, 3} 133 If *R* be a relation < from $A = \{1, 2, 3, 4\}$ to $B = \{1, 3, 5\}i.e.(a, b) \in R \Leftrightarrow a < b$, then RoR^{-1} is a) $\{(1,3), (1,5), (2,3), (2,5), (3,5), (4,5)\}$ b { (3,1), (5,1), (3,2), (5,2), (5,3), (5,4) } c) $\{(3,3), (3,5), (5,3), (5,5)\}$ $d)\{(3,3), (3,4), (4,5)\}$ 134 A relation between two persons is defined as follows: $aRb \Leftrightarrow a$ and b born in different months. Then, R is d) Equivalence a) Reflexive b)Symmetric c) Transitive 135 If *A* and *B* are two sets such that $n(A \cap \overline{B}) = 9$, $n(\overline{A} \cap B) = 10$ and $n(A \cup B) = 24$, then $n(A \times B) =$ b)210 d) None of these a) 105 c) 70 136 If A and B are two sets, then A - (A - B) is equal to c) $A \cap B$ d) B - Ab) $A \cup B$ a) B 137 If $A = \{1, 2, 3, 4\}$, then the number of subsets of A that contain the element 2 but not 3, is a) 16 b)4 c) 8 d)24 138 Let A be a set of compartments in a train. Then the relation R defined on A as aRb iff "a and b have the link between them", then which of the following is true for *R*? b)Symmetric a) Reflexive c) Transitive d) Equivalence 139 Let *R* and *S* be two relations on a set *A*. Then, which one of the following is not true?

a) *R* and *S* are transitive, then $R \cup S$ is also transitive

b) *R* and *S* are transitive, then $R \cap S$ is also transitive

c) *R* and *S* are reflexive, then $R \cap S$ is also reflexive

d) *R* and *S* are symmetric, then $R \cup S$ is also symmetric

140 The relation "is a factor of" on the set N of all natural numbers is not

a) Reflexive b)Symmetric c) Antisymetric d)Transitive 141 If $R \subset A \times B$ and $S \subset B \times C$ be relations, then $(SoR)^{-1} =$ a) $S^{-1}oR^{-1}$ b) $R^{-1}oS^{-1}$ c) SoR d)RoS 142 If relation *R* is defined as : *aRb* if "*a* is the father of *b*". Then, *R* is a) Reflexive b)Symmetric c) Transitive d) None of these 143 In a set of teachers of a school, two teachers are said to be related if they "teach the same subject", then the relation is a) Reflexive and symmetric b) Symmetric and transitive c) Reflexive and transitive d)Equivalence 144 In a battle 70% of the combatants lost one eye, 80% an ear, 75% an arm, 85% a leg, x% lost all the four limbs. The minimum value of *x* is a) 10 b)12 c) 15 d) None of these 145 If $A = \{1, 2, 3, 4\}$, then the number of subsets of set A containing element 3, is b)28 a) 24 c) 8 d)16 146 The relation $R = \{(1,1), (2,2), (3,3), (1,2), (2,3), (1,3)\}$ on set $A = \{1,2,3\}$ is a) Reflexive but not symmetric b) Reflexive but not transitive c) Symmetric and transitive d) Neither symmetric nor transitive 147 The value of $(A \cup B \cup C) \cap (A \cap B^C \cap C^C)^C \cap C^C$ is b) $B^C \cap C^C$ a) $B \cap C^{C}$ c) $B \cap C$ d) $A \cap B \cap C$ 148 If a set A contains n elements, then which of the following cannot be the number of reflexive relations on the set *A*? d) 2^{n+1} a) 2ⁿ b) 2^{n-1} c) 2^{n^2-1} 149 If A and B are two sets such that n(A) = 7, n(B) = 6 and $(A \cap B) \neq \phi$. The least possible value of $n(A \Delta B)$, is a) 1 b)7 c) 6 d)13 150 Set builder form of the relation $R = \{(-2, -7), (-1, -4), (0, -1), (1, 2), (2, 5)\}$ is a) { $(a, b): b = 2a - 3; a, b, \in Z$ } b) $((x, y): y = 3x - 1; x, y \in Z$ c) { $(a, b): b = 3a - 1; a, b \in N$ } d){(u, v): v = 3u - 1; $-2 \le u < 3$ and $u \in Z$ }

Smart Notes

IMPO	RTANT	PRACTICE	QUES	TION	SERIES	FOR	IIT-JEE EXAM	۸ – ۱	(ANSWERS)
1)	b	2)	d		3)	С	4)	a	
5)	a	6)	d		7)	a	8)	a	
9)	d	10)	b		11)	d	12)	d	
13)	d	14)	С		15)	a	16)	b	
17)	d	18)	С		19)	С	20)	b	
21)	С	22)	b		23)	d	24)	a	
25)	b	26)	С		27)	С	28)	a	
29)	d	30)	С		31)	d	32)	С	
33)	a	34)	b		35)	b	36)	С	
37)	b	38)	b		39)	b	40)	С	
41)	d	42)	С		43)	d	44)	a	
45)	a	46)	b		47)	С	48)	b	
49)	b	50)	b		51)	d	52)	b	
53)	С	54)	а		55)	d	56)	С	
57)	b	58)	С		59)	a	60)	d	
61)	С	62)	b		63)	b	64)	d	
65)	С	66)	С		67)	b	68)	a	
69)	d	70)	а		71)	С	72)	b	
73)	b	74)	b		75)	С	76)	d	
77)	a	78)	С		79)	b	80)	С	
81)	С	82)	d		83)	b	84)	d	
85)	d	86)	С		87)	С	88)	b	
89)	d	90)	d		91)	d	92)	b	
93)	С	94)	а		95)	С	96)	С	
97)	b	98)	b		99)	d	100)	d	
101)	С	102) a		103)	b	104)	С	
105)	b	106) c		107)	a	108)	b	
109)	b	110) b		111)	C	112)	a	
113)	C	114) d		115)	С	116)	c	
117)	d	118) b		119)	С	120)	с	
121)	d	122) b		123)	d	124)	b	
125)	b	126) b		127)	d	128)	С	
129)	a	130) d		131)	b	132)	С	
133)	с	134) b		135)	b	136)	С	
137)	b	138) b		139)	а	140)	b	
141)	b	142) d		143)	d	144)	a	
145)	С	146) a		147)	b	148)	d	
149)	а	150) d				,		

1	(b) For any $a \in R$, we have $a \ge a$ Therefore, the relation R is reflexive.						
	<i>R</i> is not symmetric as $(2,1) \in R$ but $(1,2) \notin R$. The relation <i>R</i> is transitive also, because $(a,b) \in R$, $(b,c) \in R$ imply that $a \ge b$ and $b \ge c$ which in turn imply that $a \ge c$						
2	(d) Clearly, <i>R</i> is an equivalence relation						
3	(c) Let <i>M</i> and <i>E</i> denote the sets of students who have taken Mathematics and Economics respectively. Then, we have $n(M \cup E) = 35, n(M) = 17$ and $n(M \cap E') = 10$ Now, $n(M \cap E') = n(M) - n(M \cap E)$ $\Rightarrow 10 = 17 - n(M \cap E) \Rightarrow n(M \cap E) = 7$						
	Now, $n(M \cup E) = n(M) + n(E) - n(M \cap E)$ $\Rightarrow 35 = 17 + n(E) - 7 \Rightarrow n(E) = 25$ $\therefore n(E \cap M') = n(E) - n(E \cap M) = 25 - 7 = 18$						
4	(a) Let $A = \{n(n+1)(2n+1): n \in Z\}$ Putting $n = \pm 1, \pm 2,, \text{ we get } A = \{ 30, -6, 0, 6, 30,\}$ $\Rightarrow \qquad \{n(n+1)(2n+1): n \in Z\} \subset \{6k: k \in Z\}$						
5	(a) $\therefore A \cup B = \{1, 2, 3, 4, 5, 6\}$ $\therefore (A \cup B) \cap C = \{1, 2, 3, 4, 5, 6\} \cap \{3, 4, 6\}$ $= \{3, 4, 6\}$						
6	(d) We have,						
	$n(A \cap B) = 9, n(A \cap B) = 10 \text{ and } n(A \cup B) = 24$ $\Rightarrow n(A) - n(A \cap B) = 9, n(B) - n(A \cap B) = 10 \text{ and, } n(A) + n(B) - n(A \cap B) = 24$ $\Rightarrow n(A) + n(B) - 2n(A \cap B) = 19 \text{ and } n(A) + n(B) - n(A \cap B) = 24$						
	$\Rightarrow n(A \cap B) = 5$ $\therefore n(A) = 14 \text{ and } n(B) = 15$ Hence, $n(A \times B) = 14 \times 15 = 210$						
7	(a) Clearly, $P \subset T$ $\therefore P \cap T = P$						
8	(a) It is given that A is a proper subset of B $\therefore A - B = \phi \Rightarrow n(A - B) = 0$ We have, $n(A) = 5$. So, minimum number of elements in B is 6 Hence, the minimum possible value of $n(A\Delta B)$ is $n(B) - n(A) = 6 - 5 = 1$						
9	(d) $\therefore n(A \times B \times C) = n(A) \times n(B) \times n(C)$ $\therefore n(C) = \frac{24}{4 - 2} = 2$						
	$\therefore \qquad n(C) = \frac{-1}{4 \times 3} = 2$						

10 **(b)** Use $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ 11 (d) $\therefore A = \{(a, b): a^2 + 3b^2 = 28, a, b \in Z\}$ ={(5, 1), (-5, -1), (5, -1), (-5, 1), (1, 3), (-1, -3), (-1, 3), (1, -3), (4, 2), (-4, -2), (4, -2), (-4, 2)And $B = \{(a, b): a > b, a, b \in Z\}$ $A \cap B = \{(-1, -5), (1, -5), (-1, -3), (1, -3), (4, 2), (4, -2)\}$: Number of elements in $A \cap B$ is 6. 13 (d) We have $R = \{(1,39), (2,37), (3,35), (4,33), (5,31), (6,29),$ (7,27), (8,25), (9,23), (10,21), (11,19), (12,17), (13,15), (14,13), (15,11), (16,9), (17,7), (18,5), (19,3), (20,1)Since $(1,39) \in R$, but $(39,1) \notin R$ Therefore, *R* is not symmetric Clearly, R is not reflexive. Now, $(15,11) \in R$ and $(11,19) \in R$ but $(15,19) \notin R$ So, *R* is not transitive 14 (c) Total number of employees = 7x i.e. a multiple of 7. Hence, option (c) is correct Tea Coffee х х х x х Milk 15 (a) The power set of a set containing *n* elements has 2^n elements. Clearly, 2^n cannot be equal to 26 16 **(b)** The relation is not symmetric, because $A \subset B$ does not imply that $B \subset A$. But, it is antisymmetric because $A \subset B$ and $B \subset A \Rightarrow A = B$ 18 **(c)** We have, $A \supset B \supset C$ $\therefore A \cup B \cup C = A$ and $A \cap B \cap C = C$ $\Rightarrow (A \cup B \cup C) - (A \cap B \cap C) = A - C$ 19 **(c)** Given, n(C) = 63, n(A) = 76 and $n(C \cap A) = x$ We know that. $n(C \cup A) = n(C) + n(A) - n(C \cap A)$ $100 = 63 + 76 - x \Rightarrow x = 139 - 100 = 39$ ⇒ And $n(C \cap A) \leq n(C)$ ⇒ *x* < 63 $\therefore 39 < x < 63$ 20 **(b)** We have, X =Set of some multiple of 9

and, Y =Set of all multiple of 9 $\therefore X \subset Y \Rightarrow X \cup Y = Y$ 21 **(c)** $A \cap B = \{x: x \text{ a multiple of } 3\}$ and $\{x: x \text{ is a multiple of } 5\}$ $= \{x: x \text{ is a multiple of } 15\}$ $= \{15, 30, 45, \dots, \}$ 22 **(b)** We have, $n(A \times B) = 45$ $\Rightarrow n(A) \times n(B) = 45$ \Rightarrow *n*(*A*)and *n*(*B*) are factors of 45 such that their product is 45 Hence, n(A) cannot be 17 24 (a) For any $x \in R$, we have $x - x + \sqrt{2} = \sqrt{2}$ an irrational number $\Rightarrow xRx$ for all x So, *R* is reflexive *R* is not symmetric, because $\sqrt{2R}$ 1 but 1 $\frac{1}{K}\sqrt{2}$ R is not transitive also because $\sqrt{2R}$ 1 and 1 R 2 $\sqrt{2}$ but $\sqrt{2}$ k $2\sqrt{2}$ 25 **(b)** We have, $n(H) - n(H \cap E) = 22, n(E) - n(H \cap E) = 12, n(H \cup E) = 45$ $\therefore n(H \cup E) = n(H) + n(E) - n(H \cap E)$ $\Rightarrow 45 = 22 + 12 + n(H \cup E)$ $\Rightarrow n(H \cap E) = 11$ 26 (c) We have, $A \subset B$ and $B \subset C$ $\therefore A \cup B = B$ and $B \cap C = B$ $\Rightarrow A \cup B = B \cap C$ 27 (C) Let $A = \left\{ x \in R : \frac{2x-1}{x^3 + 4x^2 + 3x} \right\}$ Now, $x^3 + 4x^2 + 3x = x(x^2 + 4x + 3)$ = x(x+3)(x+1) $A = R - \{0, -1, -3\}$... 29 (d) Clearly, $y^2 = x$ and y = |x| intersect at (0,0), (1,1) and (-1, -1). Hence, option (d) is correct 31 (d) Let *M*, *P* and *C* be the sets of students taking examinations in Mathematics, Physics and Chemistry respectively. We have, $n(M \cup P \cup C) = 50, n(M) = 37, n(P) = 24, n(C) = 43$ $n(M \cap P) < 19, n(M \cap C) \le 29, n(P \cap C) \le 20$ Now. $n(M \cup P \cup C) = n(M) + n(P) + n(C) - n(M \cap P)$ $-n(M \cap C) - n(P \cap C) + n (M \cap P \cap C)$ $\Rightarrow 50 = 37 + 24 + 43 - \{n(M \cap P) + n(M \cap C) + n(P \cap C)\}\$

33

35

36

38

40

41

42

We have, $A \cap (A \cap B)^c = A \cap (A^c \cup B^c)$ $\Rightarrow A \cap (A \cap B)^c = (A \cap A^c) \cup (A \cap B^c)$ $\Rightarrow A \cap (A \cap B)^c = \phi \cup (A \cap B^c) = A \cap B^c$ (c) Since *R* is a reflexive relation on *A*.

 \therefore (*a*, *a*) \in *R* for all *a* \in *A*

mart No

43

```
\Rightarrow n(A) \le n(R) \le n(A \times A) \Rightarrow 13 \le n(R) \le 169
```

3 **(d)**

Clearly, *R* is reflexive symmetric and transitive. So, it is an equivalence relation

44 **(a)**

We have, **Required number of families** $= n(A' \cap B' \cap C')$ $= n(A \cup B \cup C)'$ $= N - n(A \cup B \cup C)$ $= 10000 - \{n(A) + n(B) + n(C) - n(A \cap B)\}$ $-n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)\}$ = 10000 - 4000 - 2000 - 1000 + 500 + 300 + 400 - 200= 400045 (a) We have, $A \subset A \cup B$ $\Rightarrow A \cap (A \cup B) = A$ 46 **(b)** We have, $(A \cup B) \cap B' = A$ $\therefore ((A \cup B) \cap B') \cup A' = A \cup A' = N$ 48 **(b)** The set A consists of all points on $y = e^x$ and the set B consists of points on $y = e^{-x}$, these two curves intersect at (0, 1). Hence, $A \cap B$ consists of a single point 50 **(b)** Given, $A \cap B = A \cap C$ and $A \cup B = A \cup C$ B = C⇒ 51 (d) **Required number** $=\frac{3^4+1}{2}=41$ 52 **(b)** Clearly, A is the set of all points on a circle with centre at the origin and radius 2 and B is the set of all points on a circle with centre at the origin and radius 3. The two circles do not intersect. Therefore, $A \cap B = \phi \Rightarrow B - A = B$ 53 **(c)** We have, $n(A^c \cap B^c)$ $= n\{(A \cup B)^c\}$ $= n(\mathcal{U}) - n(A \cup B)$ $= n(\mathcal{U}) - \{n(A) + n(B) - n(A \cap B)\}$ = 700 - (200 + 300 - 100) = 30054 **(a)** We have, $\cos \theta > -\frac{1}{2}$ and $0 \le \theta \le \pi$

 $\Rightarrow 0 \le \theta \le 2\pi/3$ and $0 \le \theta \le \pi$ $\Rightarrow 0 \le \theta \le \frac{2\pi}{3} \Rightarrow A = \{\theta : 0 \le \theta \le 2\pi/3\}$ Also, $\sin \theta > \frac{1}{2}$ and $\pi/3 \le \theta \le \pi$ $\Rightarrow \frac{\pi}{3} \le \theta \le \frac{5\pi}{6} \Rightarrow B = \left\{ \theta : \frac{\pi}{3} \le \theta \le \frac{5\pi}{6} \right\}$ $\therefore A \cap B = \left\{ \theta : \frac{\pi}{3} \le \theta \le \frac{2\pi}{3} \right\} \text{ and } A \cup B = \left\{ \theta : 0 \le \theta \le \frac{5\pi}{6} \right\}$ 55 (d) Clearly, *R* is an equivalence relation 56 **(c)** Given, $A = \{1, 2, 3\}, B = \{a, b\}$ $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$... 57 **(b)** Clearly, $A_2 \subset A_3 \subset A_4 \subset \cdots \subset A_{10}$ $\therefore \bigcup A_n = A_{10} = \{2,3,5,7,11,13,17,19,23,29\}$ n=2(c) 58 Clearly, $R = \{(4,6), (4,10), (6,4), (10,4), (6,10), (10,6), (10,12), (12,10)\}$ Clearly, *R* is symmetric $(6,10) \in R \text{ and } (10,12) \in R \text{ but } (6,12) \notin R$ So, *R* is not transitive Also, R is not reflexive 61 **(C)** It is given that $\begin{array}{c} A_1 \subset A_2 \subset A_3 \dots \subset A_{99} \\ \end{array}$ $A_i = A_{99}$ $\Rightarrow n\left(\bigcup_{i=1}^{19} A_i\right) = n(A_{99}) = 99 + 1 = 100$ 62 **(b)** It is given that $2^m - 2^n = 56$ Obviously, m = 6, n = 3 satisfy the equation 63 **(b)** Clearly, $(a, a) \in R$ for any $a \in A$ Also, $(a,b) \in R$ \Rightarrow a and b are in different zoological parks \Rightarrow b and a are in different zoological parks \Rightarrow (b, a) $\in R$ Now, $(a, b) \in R$ and $(b, a) \in R$ but $(a, a) \notin R$ So, *R* is not transitive

64 (d) $X \cap Y = \{1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 200\}$ $n(X \cap Y) = 12$... 66 **(c)** We have, $X \cap (Y \cup X)' = X \cap (Y' \cap X') = (X \cap X') \cap Y' = \phi \cap Y' = \phi$ 67 **(b)** The number of subsets of A containing 2, 3 and 5 is same as the number of subsets of set $\{1, 4, 6\}$ which is equal to $2^3 = 8$ 68 (a) We have, $B_1 = A_1 \Rightarrow B_1 \subset A_1$ $B_2 = A_2 - A_1 \Rightarrow B_2 \subset A_2$ $B_3 = A_3 - (A_1 \cup A_2) \Rightarrow B_3 \subset A_3$ $\therefore B_1 \cup B_2 \cup B_3 \subset A_1 \cup A_2 \cup A_3$ 69 (d) The identity relation on a set A is reflexive and symmetric both. So, there is always a reflexive and symmetric relation on a set 70 **(a)** Let the total number of voters be *n*. Then, Number of voters voted for $A = \frac{nx}{100}$ Number of voters voted for $B = \frac{n(x+20)}{100}$ ∴ Number of voters who voted for both $= \frac{nx}{100} + \frac{n(x+20)}{100}$ $= \frac{n(2x+20)}{100}$ Hence, $n - \frac{n(2x+20)}{100} = \frac{20n}{100} \Rightarrow x = 30$ 71 (c) Since $(1,1) \notin R$. So, R is not reflexive Now, $(1,2) \in R$ but, $(2,1) \notin R$. Therefore, R is not symmetric. Clearly, *R* is transitive 72 **(b)** Let A and B denote respectively the sets of families who got new houses and compensation It is given that $n(A \cap B) = n(\overline{A \cup B})$ $\Rightarrow n(A \cap B) = 50 - n(A \cup B)$ $\Rightarrow n(A) + n(B) = 50$ $\Rightarrow n(B) + 6 + n(B) = 50 \quad [\because n(A) = n(B) + 6 \text{ (given)}]$ $\Rightarrow n(B) = 22 \Rightarrow n(A) = 28$ 73 **(b)** We have, $n(A' \cap B') = n((A \cup B)')$ $\Rightarrow n(A' \cap B') = n(\mathcal{U}) - n(A \cup B)$ $\Rightarrow n(A' \cap B') = n(\mathcal{U}) - \{n(A) + n(B) - n(A \cap B)\}$ $\Rightarrow 300 = n(\mathcal{U}) - \{200 + 300 - 100\}$

 $\Rightarrow n(\mathcal{U}) = 700$

74 **(b)** For any integer *n*, we have $n|n \Rightarrow nRn$ So, *nRn* for all $n \in Z$ \Rightarrow *R* is reflexive

Now, 2|6 but 6 does not divide 2 \Rightarrow (2, 6) \in *R* but (6,2) \notin *R* So, *R* is not symmetric Let $(m, n) \in R$ and $(n, p) \in R$. Then, $(m,n) \in R \Rightarrow m|n$ $(n,p) \in R \Rightarrow n|p \end{cases} \Rightarrow m|p \Rightarrow (m,p) \in R$ So, *R* is transitive Hence, *R* is reflexive and transitive but it is not symmetric 75 **(c)** Since, $A = B \cap C$ and $B = C \cap A$, Then $A \equiv B$ 76 (d) Since n|n for all $n \in N$. Therefore, R is reflexive. Since 2|6 but 6 \nmid 2, therefore R is not symmetric Let *nRm* and *mRp* \Rightarrow *nRm* and *mRp* \Rightarrow *n*|*m* and *m*|*p* \Rightarrow *n*|*p* \Rightarrow *nRp* So, *R* is transitive 77 (a) We have. $bN = \{bx | x \in N\}$ = Set of positive integral multiples of b $cN = \{cx | x \in N\}$ = Set positive integral multiples of c \therefore bN \cap cN = Set of positive integral multiples of bc $\Rightarrow bN \cap cN = bcN$ [: b and c are prime] Hence, d = bc79 **(b)** Let $x, y \in A$. Then, $x = m^2, y = n^2$ for some $m, n \in N$ $\Rightarrow xy = (mn)^2 \in A$ 80 (c) We have, $A_1 \subset A_2 \subset A_3 \subset \cdots \subset A_{100}$ $\therefore \bigcup A_i = A_{100} \Rightarrow n\left(\bigcup A_i\right) = n(A_{100}) = 101$

81

(c)

Let the total population of town be *x*.

MAHESH SIR'S NOTES - 7798364224

90 (d) We have, $bN = \{bx | x \in \mathbb{N}\}\$ = Set of positive integral multiples of b $cN = \{cx | x \in N\}$ = Set of positive integral multiples of c $\therefore cN = \{cx \mid x \in N\}$ = Set of positive integral multiples of b and c both \Rightarrow *d* = 1. c. m. of *b* and *c* 91 (d) Clearly, *R* is an equivalence relation 92 **(b)** Number of element is S = 10 $A = \{(x, y); x, y \in S, x \neq y\}$ And : Number of element in $A = 10 \times 9 = 90$ 93 **(c)** Clearly, $R = \{(BHEL, SAIL), (SAIL, BHEL), (BHEL, GAIL), \}$ (GAIL, BHEL), (BHEL, IOCL), (IOCL, BHEL) We observe that *R* is symmetric only 94 (a) According to the given condition, $2^m = 112 + 2^n$ $2^m - 2^n = 112$ ⇒ m = 7, n = 4⇒ 96 **(c)** We have, $p = \frac{(n+2)(2n^5 + 3n^4 + 4n^3 + 5n^2 + 6)}{n^2 + 2n}$ $\Rightarrow p = 2n^4 + 3n^3 + 4n^2 + 5n + \frac{6}{n}$ Clearly, $p \in Z^+$ iff n = 1, 2, 3, 6. So, A has 4 elements 97 **(b)** Clearly, $x \in A - B \Rightarrow x \in A$ but $x \notin B$ $\Rightarrow x$ is a multiple of 3 but it is not a multiple of 5 $\Rightarrow x \in A \cap \overline{B}$ 98 **(b)** Total drinks=3(*ie*, milk, coffee, tea). n = 100 15 12 Total number of students who take any of the drink is 80. :The number of students who did not take any of three drinks = 100 - 80 = 20100 (d) $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ = 12 + 9 - 4 = 17Hence, $n[(AUB)^c] = n(U) - n(A \cup B)$ = 20 - 17 = 3101 **(c)**

42

We have, ${x \in Z: |x - 3| < 4} = {x \in Z: -1 < x < 7} = {0,1,2,3,4,5,6}$ and. ${x \in Z: |x - 4| < 5} = {x \in Z: -1 < x < 9}$ $= \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$ $\therefore \{x \in Z \colon |x - 3| < 4\} \cap \{x \in Z \colon |x - 4| < 5\}$ $= \{0, 1, 2, 3, 4, 5, 6\}$ 102 (a) Since *R* is reflexive relation on *A* \therefore (*a*, *a*) \in *R* for all *a* \in *A* \Rightarrow The minimum number of ordered pairs in *R* is *n* Hence, $m \ge n$ 104 **(c)** We have, $y = \frac{4}{x}$ and $x^2 + y^2 = 8$ Solving these two equations, we have $x^{2} + \frac{16}{x^{2}} = 8 \Rightarrow (x^{2} - 4) = 0 \Rightarrow x = \pm 2$ Substituting $x = \pm 2$ in $y = \frac{4}{x}$, we get $y = \pm 2$ Thus, the two curves intersect at two points only (2, 2) and (-2, 2). Hence, $A \cap B$ contains just two points 105 **(b)** Let $(a, b) \in R$. Then, $|a+b| = a+b \Rightarrow |b+a| = b+a \Rightarrow (b,a) \in R$ \Rightarrow *R* is symmetric 106 **(c)** Minimum possible value of $n(B \cap C)$ is $n(A \cap B \cap C) = 3$ 107 (a) To make R a reflexive relation, we must have (1,1), (3,3) and (5,5) in it. In order to make R a symmetric relation, we must inside (3,1) and (5,3) in it. Now, $(1,3) \in R$ and $(3,5) \in R$. So, to make R a transitive relation, we must have, $(1,5) \in R$. But, *R* must be symmetric also. So, it should also contain (5,1). Thus, we have $R = \{(1,1), (3,3), (5,5), (1,3), (3,5), (3,1), (5,3), (1,5), (5,1)\}$ Clearly, it is an equivalence relation on A{1,3,5} 108 **(b)** Clearly, $(3,3) \notin R$. So, R is not reflexive. Also, (3,1) and (1,3) are in R but $(3,3) \notin R$. So, R is not transitive But, *R* is symmetric as $R = R^{-1}$ 109 **(b)** Let $(a, b) \in R$. Then, $(a,b) \in R \Rightarrow (b,a) \in R^{-1}$ [By def. of R^{-1}] \Rightarrow (b, a) $\in R[\because R = R^{-1}]$ So, *R*is symmetric 110 **(b)** We have. $A_2 \subset A_3 \subset A_4 \subset \cdots \subset A_{10}$ $\therefore \bigcap A_n = A_3 = \{2,3,5\}$

smart Notes

111	(c) The possible sets are $\{\pm 2, \pm 3\}$ and $\{\pm 4, \pm 1\}$; therefore, number of elements in required
	Set is o.
112	(a) Given, $A = \{a, b, c\}$, $B = \{b, c, d\}$ and $C = \{a, d, c\}$ Now, $A - B = \{a, b, c\} - \{b, c, d\} = \{a\}$ And $B \cap C = \{b, c, d\} \cap \{a, d, c\} = \{c, d\}$
	$\therefore (A - B) \times (B \cap C) = \{a\} \times \{c, d\}$
	-((a, a), (a, d))
110	$= \{(a, c), (a, a)\}$
113	(C)
	Given, $n(M) = 100, n(P) = 70, n(C) = 40$
	$n(M \cap P) = 30, n(M \cap C) = 28,$
	$n(P \cap C) = 23$ and $n(M \cap P \cap C) = 18$
	$: n(M \cap P' \cap C') = n[M \cap (P \cap C')]$
	$n(M) = n[M \cap (D \cap C)]$
	$= n(M) - n[M \cap (P \cap C)]$
	$= n(M) - [n(M \cap P) + n(M \cap C) - n(M \cap P \cap C)]$
	= 100 - [30 + 28 - 18 = 60]
114	(d)
	$B \cap C = \{4\}.$
	$A \cup (B \cap C) = \{1, 2, 3, 4\}$
115	(c)
	$\therefore A \subset B$
	$\frac{A}{B} = \frac{B}{B}$
116	$\begin{array}{c} c \\ c \end{array}$
110	$m((A \sqcup D)^{c}) = m(\mathcal{I}) m(A \sqcup D)$
	$n((A \cup B)^{*}) = n(u) - n(A \cup B)$
	$= n(u) - \{n(A) + n(B) - n(A \cap B)\}$
440	= 100 - (50 + 20 - 10) = 40
11/	
	If $A = \{1, 2, 3\}$, then $R = \{(1, 1), (2, 2), (3, 3), (1, 2)\}$ is reflexive on A but it is not symmetric
	So, a reflexive relation need not be symmetric
	The relation 'is less than' on the set Z of integers is antisymmetric but it is not reflexive
119	
	Clearly, Cle
	Required percent = $20 + 50 - 10 = 60\%$
	$[:: n(A \cup B) = n(A) + n(B) - n(A \cap B)]$
120	(c)
	The greatest possible value of $n(A \cap B \cap C)$ is the least amongst the values
	$n(A \cap B), n(B \cap C)$ and $n(A \cap C)$ i.e. 10
121	(d)
	Clearly, $S \subset R$
	$\therefore S \cup R = Rand S \cap R = S$
	$\Rightarrow (S \cap R) - (S \cap R) =$ Set of rectangles which are not squares
122	(h)
	Clearly the relation is symmetric but it is neither reflexive nor transitive
123	(d)
140	(*) Since nower set is a set of all possible subsets of a set
	$D(A) = (A \{x\} \{y\} \{y\})$
124	$ (n) = \{ \psi, \{\lambda\}, \{y\}, \{\lambda, y\} \} $
124	(U)

We have. N = 10,000, n(A) = 40% of 10,000 = 4000, $n(B) = 2000, n(C) = 1000, n(A \cap B) = 500,$ $n(B \cap C) = 300, n(C \cap A) = 400, n(A \cap B \cap C) = 200$ Now. Required number of families = $n(A \cap \overline{B} \cap \overline{C}) = n(A \cap (B \cup C)')$ $= n(A) - n(A \cap (B \cup C))$ $= n(A) - n((A \cap B) \cup (A \cap C))$ $= n(A) - \{n(A \cap B) + n(A \cap C) - n(A \cap B \cap C)\}$ =4000 - (500 + 400 - 200) = 3300126 **(b)** $A \cap \phi = \phi$ is true. 128 **(C)** $A \cap B = \{2, 4\}$ $\{A \cap B\} \subseteq \{1, 2, 4\}, \{3, 2, 4\}, \{6, 2, 4\}, \{1, 3, 2, 4\}, \{1, 3, 2, 4\}, \{2, 4\}, \{3, 2, 4\}, \{4, 2, 4\}, \{4, 3, 2, 4$ $\{1, 6, 2, 4\}, \{6, 3, 2, 4\}, \{2, 4\}, \{1, 3, 6, 2, 4\} \subseteq A \cup B$ \Rightarrow n(C) = 8129 (a) We have, $\frac{7n^2+3n+3}{n} \Rightarrow p = 7n+3+\frac{3}{n}$ It is given that $n \in N$ and p is prime. Therefore, n = 1 $\therefore n(A) = 1$ 130 (d) $(Y \times A) = \{(1, 1), (1, 2), (2, 1), (2, 2), \}$ (3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2)And $(Y \times B) = \{(1,3), (1,4), (1,5), (2,3),$ (2, 4), (2, 5), (3, 3), (3, 4), (3, 5), (4, 3),(4, 4), (4, 5), (5, 3), (5, 4), (5, 5) $\therefore (Y \times A) \cap (Y \times B) = \phi$ 131 **(b)** Given, n(A) = 4, n(B) = 5 and $n(A \cap B) = 3$ $\therefore n[(A \times B) \cap (B \times A)] = 3^2 = 9$ 132 (c) $U = \{x: x^5 + 6x^4 + 11x^3 - 6x^2 = 0\} = \{0, 1, 2, 3\}$ $A = \{x: x^2 - 5x + 6 = 0\} = \{2, 3\}$ And $B = \{x: x^2 - 3x + 2 = 0\} = \{2, 1\}$ $\therefore (A \cap B)' = U - (A \cap B)$ $= \{0, 1, 2, 3\} - \{2\} = \{0, 1, 3\}$ 133 **(c)** We have, $R = \{(1,3), (1,5), (2,3), (2,5), (3,5), (4,5)\}$ $\Rightarrow R^{-1} = \{(3,1), (5,1), (3,2), (5,2), (5,3), (5,4)\}$ Hence, $RoR^{-1} = \{(3,3), (3,5), (5,3), (5,5)\}$ 134 **(b)** Let $(a, b) \in R$. Then, a and b are born in different months \Rightarrow (b, a) $\in R$

So, *R* is symmetric

Clearly, *R* is neither reflexive nor transitive

136

From the venn diagram $A - (A - B) = A \cap B$

137 **(b)**

Required number of subsets is equal to the number of subsets containing 2 and any number of elements from the remaining elements 1 and 4 So, required number of elements $= 2^2 = 4$

140 **(b)**

Clearly, 2 is a factor of 6 but 6 is not a factor of 2. So, the relation 'is factor of' is not symmetric. However, it is reflexive and transitive

142 **(d)**

Clearly, *R* is neither reflexive, nor symmetric and not transitive

143 **(d)**

Clearly, given relation is an equivalence relation

145 **(c)**

Each subset will contain 3 and any number of elements from the remaining 3 elements 1,2 and 4

So, required number of elements $= 2^2 = 8$

146 **(a)**

Since $(1,1), (2,2), (3,3) \in R$. Therefore, *R* is reflexive. We observe that $(1,2) \in R$ but $(2,1) \notin R$, therefore *R* is not symmetric.

It can be easily seen that *R* is transitive **(b)**

147

 $(i) A \cup B \cup C \qquad (ii) A \cap B^{\circ} \cap C^{\circ}$

From figures (i), (ii) and (iii), we get $(A \cup B \cup C) \cap (A \cap B^C \cap C^C) \cap C^C = (B^C \cap C^C)$ (d)

148

A relation on set *A* is a subset of $A \times A$ Let $A = \{a_1, a_2, ..., a_n\}$. Then, *a* reflexive relation on *A* must contain at least *n* elements $(a_1, a_1), (a_2, a_2), ..., (a_n, a_n)$ \therefore Number of reflexive relations on *A* is 2^{n^2-n} Clearly, $n^2 - n = n, n^2 - n = n - 1, n^2 - n = n^2 - 1$ have solutions in *N* but $n^2 - n = n + 1$ is not solvable in *N*.

So, 2^{n+1} cannot be the number of reflexive relations on A(a) We have, $A \Delta B = (A \cup B) - (A \cup B)$ $\Rightarrow n(A \Delta B) = n(A) + n(B) - 2 n(A \cap B)$ So, $n(A \Delta B)$ is greatest when $n(A \cap B)$ is least It is given that $A \cap B \neq \phi$. So, least number of elements in $A \cap B$ can be one \therefore Greatest possible value of $n(A \Delta B)$ is $7 + 6 - 2 \times 1 = 11$ (d)

150

149

Let $R = \{(x, y): y = ax + b\}$. Then, $(-2, -7), (-1, -4) \in R$ $\Rightarrow -7 = -2a + b \text{ and } -4 = -a + b$ $\Rightarrow a = 3, b = -1$ $\therefore y = 3x - 1$ Hence, $R = \{(x, y): y = 3x - 1, -2 \le x < 3, x \in Z\}$

SMARTLEARN COACHING