

APPLICATION OF INTEGRALS

APPLICATION OF INTEGRATION TO AREAS

Definite integral is used to evaluate areas bounded by curves. To do problems under this heading, one must be able to draw a rough figure of the curve when the equation is given. Some rules about drawing curves are given below. Familiar curves like lines, circles and conics are not discussed here.

Guidelines

- (i) Check whether the curve is symmetrical about the x-axis or not. The curve is symmetrical about the x-axis, if its equation is unchanged when y is replaced by -y.
- (ii) The curve is symmetrical about the y-axis if its equation is unchanged when x is replaced by -x.
- (iii) Put y = 0 in the equation of the curve. This will give the points where it cuts the x-axis
- (iv) Put x = 0 in the equation of the curve. This will give the points where it cuts the y-axis.
- (v) The curve is symmetrical about the line y = x if its equation does not change when x and y are interchanged.
- (vi) Find the turning points of the graph by equating $\frac{dy}{dx} = 0$
- (vii) Find the intervals of curve in which it increases and decreases if required.
- (viii) Use periodicity wherever possible.
- (ix) Check behaviour at $x \to \pm \infty$ and $y \to \pm \infty$.

Illustration 1

Question: Trace the curve $y^2 (2a - x) = x^3$, a > 0.

Solution: Note that the curve passes through the origin and is symmetrical about the x-axis. $y^2 = \frac{x^2}{2a}$

L.H.S. is positive. If x is negative or if x is greater than 2a, R.H.S. becomes negative. Hence the curve lies only in the interval 0 to 2a. When $x \to 2a$, $y \to \infty$. Therefore the line x = 2a is an asymptote for the curve. A rough Figure is shown.

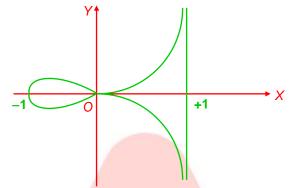
2a

Question:

Trace the curve $y^2 = \frac{x^2(1+x)}{1-x}$

Solution: The curve passes through the origin and is symmetrical about the *x*-axis. It intersects the *x*-axis at x = -1 and x = 0. If x < -1 or x > 1 the curve is non-existent. As $x \to 1$, $y \to \pm \infty$ a rough

diagram is shown below.

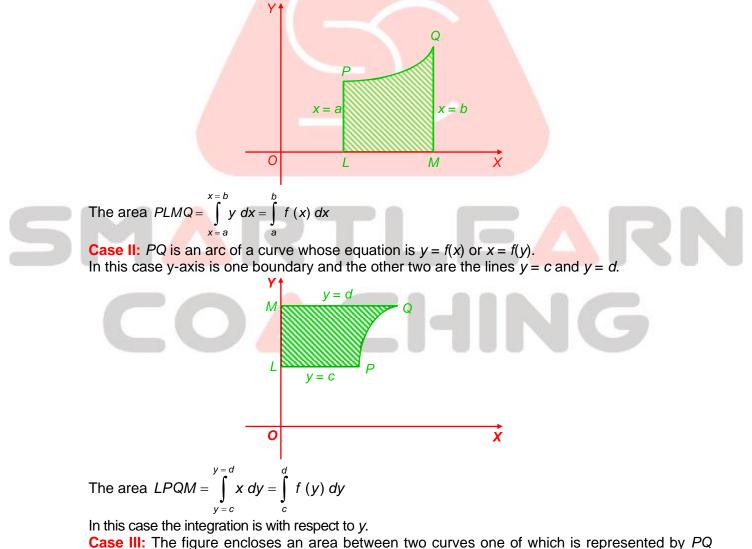


The curve has a loop between – 1 and 0.

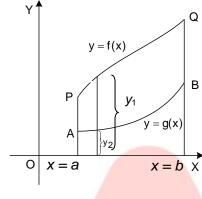
ESTIMATION OF AREAS

Four cases are discussed below:

Case I: *PQ* is an arc of a curve whose equation is y = f(x). We have an area bounded by *PQ* on one side; by the *x*-axis on another and the two parallel lines x = a and x = b (shown by *PL* and *QM*), a < b.



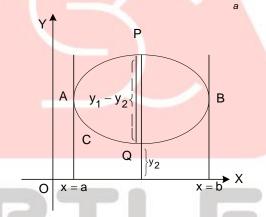
with equation y = f(x) and the other by AB with the equation y = g(x).



Area $PABQ = \int_{a}^{b} (y_1 - y_2) dx$ where $y_1 = f(x)$ and $y_2 = g(x)$ $= \int_{a}^{b} \{f(x) - g(x)\} dx$

Case IV: The figure represents the region bounded by a closed curve ACQBP.

The area of the region bounded by a closed curve ACQBP is $\int (y_1 - y_2) dx$, $y_1 > y_2$



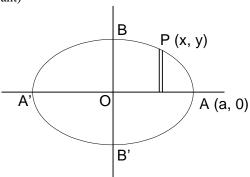
The values of y_1 and y_2 are obtained by solving the equation of the curve as a quadratic in y whose larger root y_1 and smaller root y_2 are functions of x.

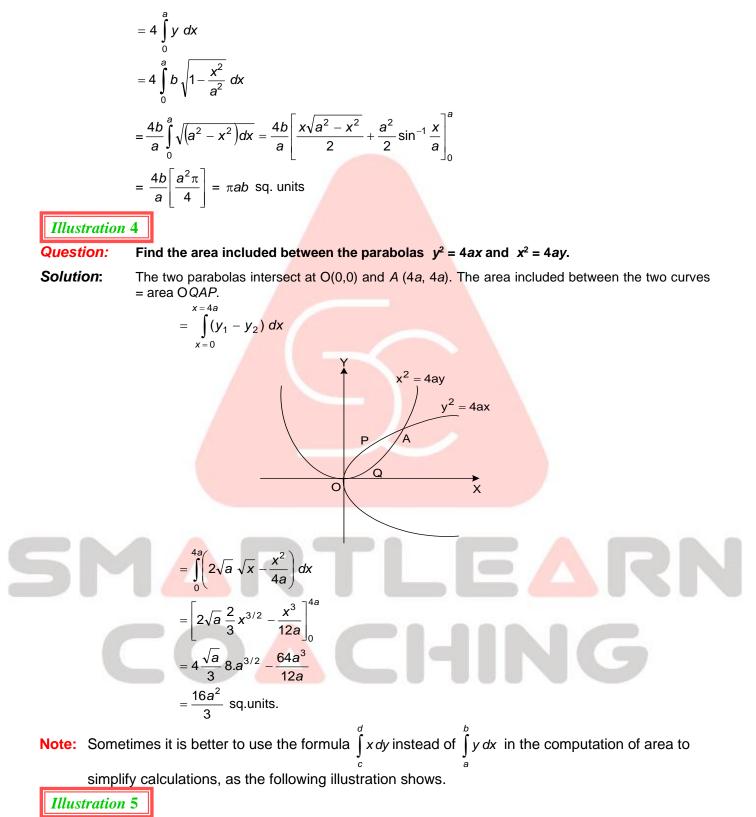
a and *b* are the coordinates of the points of contact of tangents drawn parallel to the y-axis.

Illustration 3

Question: Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$

Solution: The ellipse is symmetrical about both axes and hence the area enclosed = 4 (area of the quadrant)

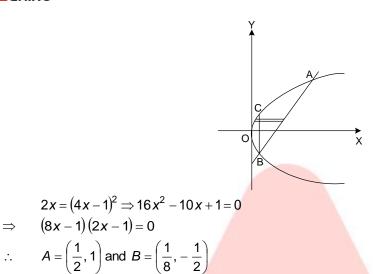




Question:Find the area of the segment cut off from the parabola $y^2 = 2x$ by the line y = 4x - 1.Solution:The line y = 4x - 1 intersects the parabola $y^2 = 2x$ at A and B

 \Rightarrow

(8x-1)(2x-1)=0



If the formula $\int y \, dx$ is to be used then the area will have to be split up as OBC and CBA. Instead the problem can be done directly by using the formula $\int (x_2 - x_1) dy$.

Area required =
$$\int_{y=-1/2}^{1} (x_2 - x_1) dy$$

=
$$\int_{-1/2}^{1} \left(\frac{y+1}{4} - \frac{y^2}{2} \right) dy$$

=
$$\left[\frac{y^2}{8} + \frac{y}{4} - \frac{y^3}{6} \right]_{-1/2}^{1}$$

=
$$\left(\frac{1}{8} + \frac{1}{4} - \frac{1}{6} \right) - \left(\frac{1}{32} - \frac{1}{8} + \frac{1}{48} \right)$$

=
$$\frac{(3+6-4)}{24} - \frac{(3-12+2)}{96} = \frac{5}{24} + \frac{7}{96} = \frac{27}{96} = \frac{9}{32} \text{ sq. units}$$

OACHING

