

APPLICATION OF INTEGRALS

1 APPLICATION OF INTEGRATION TO AREAS

Definite integral is used to evaluate areas bounded by curves. To do problems under this heading, one must be able to draw a rough figure of the curve when the equation is given. Some rules about drawing curves are given below. Familiar curves like lines, circles and conics are not discussed here.

Guidelines

- (i) Check whether the curve is symmetrical about the *x*-axis or not. The curve is symmetrical about the *x*-axis, if its equation is unchanged when *y* is replaced by −*y*.
- (ii) The curve is symmetrical about the *y*-axis if its equation is unchanged when *x* is replaced by −*x*.
- (iii) Put $y = 0$ in the equation of the curve. This will give the points where it cuts the *x*-axis
- (iv) Put *x* = 0 in the equation of the curve. This will give the points where it cuts the *y*-axis.
- (v) The curve is symmetrical about the line *y* = *x* if its equation does not change when *x* and *y* are interchanged.
- (vi) Find the turning points of the graph by equating $\frac{dy}{dx} = 0$ dx $\frac{dy}{dx} =$
- (vii) Find the intervals of curve in which it increases and decreases if required.

Y

- (viii) Use periodicity wherever possible.
- (ix) Check behaviour at $x \to \pm \infty$ and $y \to \pm \infty$.

Illustration **1**

Question: Trace the curve y^2 (2*a* − *x*) = x^3 , *a* > 0.

Solution: Note that the curve passes through the origin and is symmetrical about the *x*-axis. $y^2 =$

L.H.S. is positive. If *x* is negative or if *x* is greater than 2*a*, R.H.S. becomes negative. Hence the curve lies only in the interval 0 to 2*a*. When $x \to 2a$, $y \to \infty$. Therefore the line $x = 2a$ is an asymptote for the curve. A rough Figure is shown.

O 2*a*

X

Illustration 2	
Question:	Trace the curve $y^2 = \frac{x^2(1+x)}{1-x}$

í

Solution: The curve passes through the origin and is symmetrical about the x-axis. It intersects the *x*-axis at $x = -1$ and $x = 0$. If $x < -1$ or $x > 1$ the curve is non-existent. As $x \rightarrow 1$, $y \rightarrow \pm \infty$ a rough

a x x 2

3

diagram is shown below.

The curve has a loop between -1 and 0.

2 ESTIMATION OF AREAS

Four cases are discussed below:

Case I : *PQ* is an arc of a curve whose equation is $y = f(x)$. We have an area bounded by *PQ* on one side; by the *x*-axis on another and the two parallel lines $x = a$ and $x = b$ (shown by PL and QM), $a < b$ *b*.

Case III: The figure encloses an area between two curves one of which is represented by *PQ* with equation $y = f(x)$ and the other by AB with the equation $y = g(x)$.

a $= \int \{f(x) - g(x)\}\,$ *b a f*(*x*) *g*(*x*) *dx*

b

Case IV: The figure represents the region bounded by a closed curve ACQBP.

The area of the region bounded by a closed curve ACQBP is $\int_{0}^{b} (y_1 - y_2) dx$, $y_1 > y_2$ $\int (y_1 - y_2) dx$, $y_1 >$

The values of y₁ and y₂ are obtained by solving the equation of the curve as a quadratic in y whose larger root y_1 and smaller root y_2 are functions of x .

a and *b* are the coordinates of the points of contact of tangents drawn parallel to the y-axis.

Illustration **3**

Question: Find the area of the ellipse $\frac{2}{\epsilon^2} + \frac{y}{\epsilon^2} - 1 = 0$ **2 2 2** $+\frac{1}{b^2}-1=$ *y a x*

Solution: The ellipse is symmetrical about both axes and hence the area enclosed $= 4$ (area of the quadrant)

Question: Find the area of the segment cut off from the parabola $y^2 = 2x$ by the line $y = 4x - 1$. **Solution:** The line $y = 4x - 1$ intersects the parabola $y^2 = 2x$ at *A* and *B*

$$
\Rightarrow (8x-1)(2x-1) = 0
$$

\n
$$
\therefore A = \left(\frac{1}{2}, 1\right) \text{ and } B = \left(\frac{1}{8}, -\frac{1}{2}\right)
$$

If the formula ∫*y dx* is to be us<mark>ed then the area will have to b</mark>e split up as *OBC* and *CBA*. Instead the problem can be done directly <mark>by using the formula $\int (x_2 - x_1) dy$ </mark> .

Area required =
$$
\int_{y=-\frac{1}{2}}^{1} (x_2 - x_1) dy
$$

\n=
$$
\int_{-\frac{1}{2}}^{1} \left(\frac{y+1}{4} - \frac{y^2}{2} \right) dy
$$

\n=
$$
\left[\frac{y^2}{8} + \frac{y}{4} - \frac{y^3}{6} \right]_{-\frac{1}{2}}^{1}
$$

\n=
$$
\left(\frac{1}{8} + \frac{1}{4} - \frac{1}{6} \right) - \left(\frac{1}{32} - \frac{1}{8} + \frac{1}{48} \right)
$$

\n=
$$
\frac{(3+6-4)}{24} - \frac{(3-12+2)}{96} = \frac{5}{24} + \frac{7}{96} = \frac{27}{96} = \frac{9}{32}
$$
 sq. units

OACHING

