

Binomial Theorem

BINOMIAL EXPRESSION

Any algebraic expression consisting of only two terms is known as binomial expression. The terms may consist of variables x, y etc. or constants or their mixed combinations. For example: 2x + 3y, 4xy + 3y5 etc.

BINOMIAL THEOREM FOR POSITIVE INDEX

Binomial theorem gives a formula for the expansion of a binomial expression raised to any positive integral power.

In general for a positive integer *n*

$$(x + y)^n = {}^nC_0 x^n + {}^nC_1 x^{n-1} y^1 + {}^nC_2 x^{n-2} y^2 + \dots + {}^nC_n x^0 y^n$$
, where ${}^nC_r = \frac{m!}{(n-r)! r!}$

for $r = 0, 1, 2, \dots, n$ is called binomial coefficient.

PROOF OF BINOMIAL THEOREM 2.1

The Binomial theorem can be proved by mathematical induction Let P(n) stands for the mathematical statement

$$(x+a)^{n} = x^{n} + {}^{n}C_{1} x^{n-1} a + {}^{n}C_{2} x^{n-2} a^{2} + \dots + {}^{n}C_{r} x^{n-r} a^{r} + \dots + a^{n} \dots (i)$$

Note that there are (n + 1) terms in R.H.S. and all the terms are of the same degree in x and a together. When n = 1, L.H.S. = x + a and R.H.S. = x + a (there are only 2 terms)

 $\therefore P(1) \text{ is verified to be true}$

i.e., $(x + a)^m = x^m + {}^mC_1 x^{m-1} a + {}^mC_2 x^{m-2} a^2 + ... + {}^mC_r x^{m-1} a^r + ... + a^m ...(ii)$ Multiplying equation (ii) by (x + a), we have

$$(x + a)^{m} (x + a) = (x + a) \{x^{m} + {}^{m}C_{1} x^{m-1} a + {}^{m}C_{2} x^{m-2} a^{2} + \dots + {}^{m}C_{r} x^{m-r} a^{r} + \dots + a^{m} \}$$

i.e., $(x + a)^{m+1} = x^{m+1} + {}^{(m}C_{1} + 1) x^{m} a + {}^{(m}C_{2} + {}^{m}C_{1}) x^{m-1} a^{2} + \dots + {}^{(m}C_{r} + {}^{m}C_{r-1}) x^{m-r+1} a^{r} + \dots + a^{m+1}$
$$= x^{m+1} + {}^{(m+1)}C_{1} x^{m} a + {}^{(m+1)}C_{2} x^{m-1} a^{2} + \dots + {}^{m+1}C_{r} x^{m+1-r} a^{r} + \dots + a^{m+1} \dots + {}^{(m+1)}C_{2} x^{m-1} a^{2} + \dots + {}^{(m+1)}C_{2} x^{m-1} a^{2} +$$

(using the formula ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{(n+1)}C_{r}$)

Equation (iii) implies that P(m + 1) is true and hence by induction P(n) is true.

Alternative method

By choosing x from all the brackets we get the term x^n . Choosing x from (n-1) factors and 'a' from the remaining factor we get x^{n-1} a. But the number of ways of doing this is equal to the number of ways of choosing one factor from *n* factors (i.e.,) ${}^{n}C_{1}$. Choosing *x* from (n-2) factor and a from the remaining two factors, we get $x^{n-2} a^2$. But the number of ways of doing this is equal to the number of ways of choosing two factors from n factors. i.e., ${}^{n}C_{2}$. Finally choosing 'a' from all the factors we get the

 $+ {}^{6}C_{5}x\left(\frac{-1}{x}\right)^{5} + {}^{6}C_{6}x^{0}\left(\frac{-1}{x}\right)^{6}$

term a^n .

$$\therefore (x+a)^n = x^n + {}^nC_1 x^{n-1} a + {}^nC_2 x^{n-2} a^2 + \dots + {}^nC_r x^{n-r} a^r + \dots + a^n$$

Illustration 1

Question: Expand $\left(x - \frac{1}{x}\right)^{6}$

Solution:

$$= x^{6} - 6x^{4} + 15x^{2} - 20 + \frac{15}{x^{2}} - \frac{6}{x^{4}} + \frac{1}{x^{6}}$$

3 GENERAL TERM IN THE BINOMIAL EXPANSION

The general term in the expansion of $(x + y)^n$ is $(r + 1)^{\text{th}}$ term, given by $t_{r+1} = {}^nC_r x^{n-r} y^r$ where r = 0, 1, 2, ..., n.

 $\left(x - \frac{1}{x}\right)^{6} = {}^{6}C_{0}x^{6} + {}^{6}C_{1}x^{5}\left(\frac{-1}{x}\right) + {}^{6}C_{2}x^{4}\left(\frac{-1}{x}\right)^{2} + {}^{6}C_{3}x^{3}\left(\frac{-1}{x}\right)^{3} + {}^{6}C_{4}x^{2}\left(\frac{-1}{x}\right)^{4}$

- Every term in the expansion is of nth degree in variables x and y.
- The total number of terms in the expansion is n + 1.
- Binomial expansion can also be expressed as $(x + y)^n = \sum_{r=0}^n {}^n C_r x^{n-r} y^r$.

Illustration 2

Question: Find the 11th term in the expansion of
$$\left(3x - \frac{1}{x\sqrt{3}}\right)^{20}$$

Solution: The general term $= t_{r+1} = (-1)^{r-20} C_r (3x)^{20-r} \left(\frac{1}{x\sqrt{3}}\right)^{1/2}$

For the 11th term, we must take
$$r = 10$$

$$t_{11} = t_{10+1} = (-1)^{10} \ {}^{20}C_{10} \ (3x)^{20-10} \left(\frac{1}{x\sqrt{3}}\right)$$
$${}^{20}C_{10} \ 3^{10} \ x^{10} \ \frac{1}{x^{10} \ (\sqrt{3})^{10}} = {}^{20}C_{10} \ (\sqrt{3})^{10} = {}^{20}C_{10}$$

Illustration 3

Question:
 The 2nd, 3rd and 4th terms of
$$(x + y)^n$$
 are 240, 720 and 1080 respectively. Find x, y and n.

 Solution:
 $t_2 = {}^nC_1 x^{n-1} y = 240$
 $t_3 = {}^nC_2 x^{n-2} y^2 = 720$
 $t_4 = {}^nC_3 x^{n-3} y^3 = 1080$

10

$$\frac{{}^{n}C_{2} x^{n-2} y^{2}}{{}^{n}C_{1} x^{n-1} y} = \frac{720}{240}; \text{ i.e., } \frac{n-1}{2} \frac{y}{x} = 3 \qquad \dots \text{ (i)}$$

$$\frac{{}^{n}C_{3} x^{n-3} y^{3}}{{}^{n}C_{2} x^{n-2} y^{2}} = \frac{1080}{720}; \text{ i.e., } \frac{n-2}{3} \frac{y}{x} = \frac{3}{2} \qquad \dots \text{ (ii)}$$
Dividing equation (i) by equation (ii) we have
$$\frac{3(n-1)}{2(n-2)} = 2 \implies n = 5$$

Using
$$n = 5$$
 in (i) we have $\frac{y}{x} = \frac{3}{2}$
Substituting in t_2 we have ${}^5C_1 x^4 \frac{3}{2} x = 240$
 $\therefore x^5 = 32 \implies x = 2$ and $y = 3$
 $\therefore x = 2, y = 3$ and $n = 5$.

Illustration 4

The

Question: Find the term independent of $x \ln \left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$

Solution:

general term =
$${}^{9}C_{r}\left(\frac{3x^{2}}{2}\right)^{9-r}\left(\frac{-1}{3x}\right)^{r}$$

= $(-1)^{r} {}^{9}C_{r}\frac{3^{9-2r}}{2^{9-r}} \cdot x^{18-3r}$

The term independent of x, (or the constant term) corresponds to x^{18-3r} being x^0 or $18-3r=0 \implies r=6$

 \therefore the term independent of x is the 7th term and its value is

$$(-1)^{6} {}^{9}C_{6} \frac{3^{9-12}}{2^{9-6}} = {}^{9}C_{3} \frac{3^{-3}}{2^{3}} = \frac{9 \cdot 8 \cdot 7}{3 \cdot 2 \cdot 1} \cdot \frac{1}{(6)^{3}} = \frac{7}{18}$$

4 MIDDLE TERMS OF THE EXPANSION

4.1

In the binomial expansion of $(x + y)^n$

WHEN *n* IS ODD

There are (n + 1) i.e. even terms in the expansion and hence two middle terms are given by

4.2 WHEN *n* IS EVEN

There are odd terms in the expansion and hence only one middle term is given by

$$t_{\frac{n}{2}+1} = {}^{n}C_{n/2} x^{n/2} y^{n/2}$$
 for $r = \frac{\pi}{2}$

Illustration 5Question:Find the middle term in the expression of $(1 - 2x + x^2)^n$.Solution: $(1 - 2x + x^2)^n = [(1 - x)^2]^n = (1 - x)^{2n}$ Here 2n is even integer, therefore, $(\frac{2n}{2} + 1)^{\text{th}}$ i.e. $(n + 1)^{\text{th}}$ term will be the middle term.Now $(n + 1)^{\text{th}}$ term in $(1 - x)^{2n} = {}^{2n}C_n(1)^{2n-n}(-x)^n$

$$= {}^{2n}C_n(-x)^n = \frac{(2n)!}{n! n!} (-x)^n.$$

Illustration 6

Question: Prove that middle term in the expansion of $\left(x + \frac{1}{x}\right)^{2n}$ is $\frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{n!} \cdot 2^{n}$.

Solution: Since 2n is even, therefore $\left(\frac{2n}{2}+1\right)^{\text{th}}$ i.e. $(n+1)^{\text{th}}$ term will be the middle term.

Now $(n + 1)^{\text{th}}$ term i.e. middle term in $\left(x + \frac{1}{x}\right)^{2n}$ is given by

$$t_{n+1} = {}^{2n}C_n x^{2n-n} \left(\frac{1}{x}\right)^n = {}^{2n}C_n x^n \frac{1}{x^n} = {}^{2n}C_n$$

= $\frac{(2n)!}{n! n!} = \frac{2n(2n-1)(2n-3).....4.3.2.1}{n! n!}$
= $\frac{[1.3.5....(2n-1)2^n n (n-1) (n-2) (n-3)....2.1]}{n! n!}$
= $\frac{1.3.5....(2n-1)2^n n!}{1.3.5....(2n-1)2^n}$

$$=\frac{1.3.5...(2n-1)2^{n}n!}{n!n!}=\frac{1.3.5...(2n-1)}{n!}$$

BINOMIAL COEFFICIENTS

In the binomial expansion of $(x + y)^n = \sum_{r=0}^n {}^n C_r x^{n-r} y^r$

- The binomial coefficients of the expansion equidistant from the beginning and the end are equal. In other words ${}^{n}C_{r} = {}^{n}C_{n-r}$.
- The greatest binomial coefficient in the expansion is always the binomial coefficient of middle term/terms.

Illustration 7

5

Question:	If the coefficient of $(2r + 4)^{\text{th}}$ term and $(r - 2)^{\text{th}}$ term in the expansion of $(1 + x)^{18}$ are equal, find r.
Solution:	Since coefficient of $(2r + 4)^{\text{th}}$ term in $(1 + x)^{18} = {}^{18}C_{2r+3}$. Coefficient of $(r - 2)^{\text{th}}$ term = ${}^{18}C_{r-3}$ $\Rightarrow {}^{18}C_{2r+3} = {}^{18}C_{r-3} \Rightarrow 2r + 3 + r - 3 = 18$ $\Rightarrow {}^{2r-18} = {}^{2r-5} r = 6$
Illustration	8
Question:	Find the coefficient of x^5 in the expansion of $(1 + x + x^3)^9$.
Solution:	$(1 + x + x^3)^9 = [(1 + x) + x^3]^9$
	$= (1 + x)^9 + {}^9C_1 (1 + x)^8 x^3 + {}^9C_2 (1 + x)^7 x^6 + \dots $ (i)
	The coefficient of x^5 in $(1 + x)^9$ is 9C_5 i.e. 9C_4
	The coefficient of x^5 in ${}^9C_1 (1+x)^8 x^3 = \text{coefficient of } x^2$ in ${}^9C_1 (1+x)^8 = 9$. 8C_2
	The remaining terms in (i) all contain powers of x higher than the fifth.
	$\therefore \text{ the required coefficient is } {}^9C_4 + 9 \times {}^8C_2 = \frac{9 \cdot 8 \cdot 7 \cdot 6}{1 \cdot 2 \cdot 3 \cdot 4} + \frac{9 \cdot 8 \cdot 7}{1 \cdot 2} = 378$

Alternatively

$$[1 + x (1 + x^{2})]^{9} = 1 + {}^{9}C_{1} x (1 + x^{2}) + {}^{9}C_{2} x^{2} (1 + x^{2})^{2} + {}^{9}C_{3} x^{3} (1 + x^{2})^{3} + {}^{9}C_{4} x^{4} (1 + x^{2})^{4} + \dots$$

x⁵ occurs in 4th and 6th terms only and it is equal to $= 3 \times {}^9C_3 + {}^9C_5$ = 252 + 126 = 378

Illustration 9

Question:Show that $11^{n+2} + 12^{2n+1}$ is divisible by 133.Solution: $11^{n+2} + 12^{2n+1} = 11^2 \cdot 11^n + 12 (144)^n$
Now 144 and 121 should be expressed in terms of 133; 144 as (133 + 11) or 121 as (133 - 12)
 $= 121 \cdot 11^n + 12 (11 + 133)^n$

 $= 11^{n} (121 + 12) + \text{terms containing } 133 \text{ as a factor}$

 $=11^{n} \cdot 133 + \text{terms containing } 133 \text{ as a factor}$

Hence the expression is divisible by 133.

• The ratio of $(r + 1)^{th}$ coefficient to r^{th} coefficient is $\frac{n-r+1}{r}$ as

$$\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{\frac{n!}{(n-r)!r!}}{\frac{n!}{(n-r+1)!(r-1)!}} = \frac{n-r+1}{r}$$

Illustration 10

Question: If a_r be the coefficient of x^r in the expansion of $(1 + x)^n$, then prove that

$$(a_0 + a_1)(a_1 + a_2)....(a_{n-1} + a_n) = a_0 \cdot a_1 \cdot a_2 \dots a_{n-1} \frac{(n+1)!}{n!}$$

Solution:

 $a_r = {}^n C_r$ and $a_{r-1} = {}^n C_{r-1}$

$$\therefore \quad \frac{a_r}{a_{r-1}} = \frac{{}^n C_r}{{}^n C_{r-1}} = \frac{n!}{r! (n-r)!} \frac{(r-1)! (n-r+1)!}{n!} = \frac{n-r+1}{r} = \frac{n+1}{r} - 1$$

$$\therefore \quad \frac{a_r + a_{r-1}}{a_{r-1}} = \frac{n+1}{r} \qquad \dots (i)$$
Putting $r = 1, 2, \dots, n$ and multiplying together,

$$\left(\frac{a_0 + a_1}{a_0}\right) \left(\frac{a_1 + a_2}{a_1}\right) \dots \left(\frac{a_{n-1} + a_n}{a_{n-1}}\right) = \frac{(n+1)^n}{1.2 \dots n}$$

$$\therefore \quad (a_0 + a_1) (a_1 + a_2) \dots (a_{n-1} + a_n) = \frac{(a_0 \ a_1 \dots a_{n-1})(n+1)^n}{n!}$$

6 **GREATEST TERM IN THE EXPANSION**

The numerically greatest term (absolute value) in the expansion of $(1 + x)^n$ is determined by the following process:

Let t_{r+1} be the numerically greatest term, then $|t_r| \le |t_{r+1}| \ge |t_{r+2}|$

Considering
$$\left|\frac{t_{r+1}}{t_r}\right| \ge 1$$

$$\Rightarrow \quad \left|\frac{n-r+1}{r}x\right| \ge 1 \qquad \Rightarrow \quad \frac{n-r+1}{r} \mid x \mid \ge 1$$

$$\Rightarrow (n-r+1) | x | \ge r \Rightarrow r \le (n+1) \frac{|x|}{1+|x|} \qquad \dots (i)$$

Also $\left| \frac{t_{r+1}}{t_{r+2}} \right| \ge 1$
$$\Rightarrow \left| \frac{r+1}{n-r} \frac{1}{x} \right| \ge 1 \qquad \Rightarrow r+1 \ge (n-r) | x |$$

$$\Rightarrow r \ge \frac{n | x | -1}{1+|x|}$$

$$\Rightarrow r \ge (n+1) \frac{|x|}{1+|x|} - 1 \qquad \dots (ii)$$

Thus from (i) and (ii) for t_{r+1} to be the greatest term

Thus from (i) and (ii) for t_{r+1} to be the gr

 $r \le m$ and $r \ge m - 1$ where $m = (n+1) \frac{|x|}{1+|x|}$

- If m is an integer, then there are two terms with numerically greatest magnitude, for r = m and r = m - 1 i.e. t_{m+1} and t_m .
- If m is not an integer, then there is only one numerically greatest term, for r = [m] t_{[m]+1}, where [m] is the greatest integer function of m. i.e.

In general, for the expansion $(a + x)^n$ or $a^n \left(1 + \frac{x}{a}\right)^n$ we can consider $m = (n+1) \frac{|x/a|}{1 + |x/a|}$.

Illustration 11

Question: Find the greatest term in the expansion of
$$(4 + 3x)^7$$
 when $x = \frac{2}{3}$.
Solution: Here the greatest term means the numerically greatest term.
 $\left|\frac{t_{r+1}}{t_r}\right| = \frac{^7C_r 4^{7-r} (3x)^r}{^7C_{r-1} 4^{8-r} (3x)^{r-1}} = \frac{8-r}{r} \frac{3x}{4} = \frac{8-r}{2r} \operatorname{since} x = 2/3$
Now $|t_{r+1}| \ge |t_r|$ if $8 - r \ge 2r$ or $\frac{8}{3} \ge r$
This inequality is valid only for $r = 1$ or 2
Thus for $r = 1, 2; |t_{r+1}| > |t_r|$ and
for $r = 3, 4; |t_{r+1}| < |t_r|$
 $\therefore |t_1| < |t_2| < |t_3| > |t_4| > |t_5| > \dots$
greatest term $= |t_3| = {^7C_2 4^5} \cdot (3x)^2$, where $x = \frac{2}{3}$
 $= 21 \times 4^5 \times 2^2 = 86016$
7 SUMMATION OF SERIES INCLUDING BINOMIAL COEFFICIENTS

In the binomial expansion of $(1 + x)^n$, let us denote the coefficients nC_0 , nC_1 , nC_2 ,, ${}^{n}C_{r}$,...., ${}^{n}C_{n}$ by C_{0} , C_{1} , C_{2} ,, C_{r} ,, C_{n} respectively.

The sum of the binomial coefficients in the expansion of $(1 + x)^n$ is 2^n : $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$... Putting x = 1 $C^{2^{n}} = C_{0} + C_{1} + C_{2} + \dots + C_{n}$ *.*.. ...(i) $\sum_{r=1}^{n} C_{r} = 2^{n} .$ or

S	

COACHIN	G	
Illustration	12	
Question:	Prove that the sum of the coefficients in the expansion of $(1 + x - 3x^2)^{2163}$ is -1.	
Solution:	Putting $x = 1$ in $(1 + x - 3x^2)^{2163}$, the required sum of coefficients	
	$= (1 + 1 - 3)^{2163} = (-1)^{2163} = -1.$	
Illustration	13	
Questien	If the same of the coefficients in the same main of $(-2^2 - 2a + 4)^{35}$ is small to the same of the	
Question.	If the sum of the coefficients in the expansion of $(\alpha x^2 - 2x + 1)^{-3}$ is equal to the sum of the	
Solution:	Sum of the coefficients in the expansion of $(x - \alpha y)^{-2}$, then find the value of α .	
Solution.	= Sum of the coefficients in the expansion of $(x - \alpha)^{35}$	
	Putting $x = y = 1$	
	$\therefore \qquad (\alpha - 1)^{35} = (1 - \alpha)^{35}$	
	$\Rightarrow \qquad (\alpha - 1)^{35} = -(\alpha - 1)^{35}$	
	$\Rightarrow 2(\alpha - 1)^{35} = 0$	
	$\therefore \qquad \alpha - 1 = 0$	
	\therefore $\alpha = 1$	
• The s	sum of the coefficients of the odd terms in the expansion of $(1 + x)^n$ is equal to the	
sum o	of the coefficients of the even terms and each is equal to 2^{n-1}	
Since	$(1 + x)'' = C_0 + C_1 + C_2 x^2 + C_3 x^3 + \dots + C_n x^n$	
Puttin	$g x = -1, \qquad (1)^n Q$	
	$0 = C_0 - C_1 + C_2 - C_3 + \dots + (-1)'' C_n$	
and	$2^{n} = C_0 + C_1 + C_2 + C_3 + \dots + C_n \qquad \text{{from (I)}}$	
Addin	g and subtracting these two equations, we get $2^{n} = 2(C + C + C + C)$	
	$Z = Z (C_0 + C_2 + C_4 + \dots) \text{ and } Z = Z (C_1 + C_3 + C_5 + \dots)$	
 SUM ($O_0 + O_2 + O_4 + \dots - O_1 + O_3 + O_5 + \dots - Z$	
Sume	i coemcients of odd terms – sum of coemcients of even terms – 2	
Illustration	14	
Question:	Evaluate the sum : ${}^{8}C_{1} + {}^{8}C_{3} + {}^{8}C_{5} + {}^{8}C_{7}$.	
Solution:	Since ${}^{8}C_{1} + {}^{8}C_{3} + {}^{8}C_{5} + {}^{8}C_{7}$ = sum of even terms coefficients in the expansion of $(1 + x)^{8}$	
_	$=2^{8-1}=2^7=128.$	
Differ	rentiation can be used to solve series in which each term is a product of an integer	
and a	binomial coefficient i.e. in the form k . "Cr.	
Illustration 15		
Question:	Show that 3 $C_{1} + 7$ $C_{2} + 11$ $C_{2} + \frac{1}{2} + \frac{1}{2} (4n+3) C_{2} - \frac{1}{2} (2n+3) 2^{n}$	
Solution:	This problem can be done be differentiating the expansion of $x^3(1 + x^4)^n$ and putting $x = 1$	
Condition.	$x^{3} (1 + x^{4})^{n} = x^{3} (C_{0} + C_{1}x^{4} + C_{2}x^{8} + \dots + C_{n}x^{4n})$	
	$= C_0 x^3 + C_1 x^7 + C_2 x^{11} + \dots + C_n x^{4n+3}$	
	Differentiating we get,	
	$\Rightarrow \qquad 3x^2 (1 + x^4)^n + x^3 n (1 + x^4)^{n-1} 4x^3 = 3x^2 C_0 + 7x^6 C_1 + 11x^{10} C_2 + \dots + (4n+3)x^{4n+2} C_n$	
	Now substituting $X = 1$ in both sides.	
	$\Rightarrow 3C_0 + 7C_1 + 11C_2 + \dots + (47+3)C_n \\ = 3(2n) + 4n(2)n^{-1}$	
	$= (3 + 2n) 2^{n}$	
	Alternative method	
	Let $S = 3 \cdot C_0 + 7 \cdot C_1 + 11 \cdot C_2 + \dots + (4n-1)^n C_{n-1} + (4n+3) C_n$	
	$S = (4n + 3)C_{0} + (4n - 1)C_{1} + 3C_{2}$	
	$2S = (4n + 6) \int C_{-+} C_{-+} = (4n + 6) 2^{n}$	
	$20 - (411 + 0) (00 + 01 + \dots + 0n) = (411 + 0) 2$	
	$\therefore \qquad S = (2n+3) 2^{\prime\prime}$	
Illustration	16	

Smart Notes

Control Show that
$$C_1 + 2$$
, $C_2 + 3$, $C_3 + ..., + n$, $C_n = n$, 2^{n-1} .
Solution: The problem can be done by differentialing the expansion of $(1 + x)^0$ and then putting $x = 1$
Attenuive method
The numbers multiplying binomial coefficients are 1, 2, 3, ..., *n* and these are in arithmetic
progression.
Let $S = C_1 + 2$, $C_2 + 3$, $C_3 + ..., + (n-1)C_{n-1} + n$, C_n
 $S = n$, $C_0 + (n-1)C_1 + (n-2)C_2 + (n-3)$, $C_3 + ..., + 1 + C_{n-1}$
(Witting the terms in the reverse order and remembering that $C_2 = C_{m-1}$), adding
 $Z S = n$, $C_0 + n$, $C_1 + n$, $C_2 + ..., + n$, $C_{n-1} + n$, C_n
 $= n + [C_0 + C_1 + C_2 + ..., + n - C_{n-1} + n$, C_n
 $= n + [C_0 + C_1 + C_2 + ..., + n - C_{n-1} + n$, C_n
 $= n + \frac{2 \cdot n(n-1)}{1.2} + 3 \cdot \frac{n(n-1)(n-2)}{1.2.3} + ..., + n$
 $= n \left\{ 1 + \frac{n-1}{1.2} + \frac{(n-1)(n-2)}{1.2.3} + ..., + n + 0 - \frac{n}{1.2.3} + ..., + 1 \right\}$
 $= n \left\{ 1 + \frac{n-1}{1.2} + \frac{(n-1)(n-2)}{1.2.3} + ..., + (n-1)^{n-1}n$, $C_n = 0$.
Thermative method
 $S = {}^{n}C_1 - 2$, $C_2 + 3$, $C_2 - 4$, $C_2 + ..., + (-1)^{n-1}n$, $C_n = 0$.
Solution: The problem can be done by differentialing the expansion of $(1 + x)^n$ and then putting $x = -1$.
Atternative method
LHS = ${}^{n}C_1 - 2^n C_2 + 3$, $C_3 - ..., + (-1)^{n-1} \cdot n \cdot C_n$
 $= n \left\{ 1 + (n-1)^{n-1} - n \cdot 2^{n-1} + \frac{n-1}{n-1} + \frac{n-1}{n+1} + \frac{n-1}{n+$

$$= 1 + \frac{n}{2} + \frac{n(n-1)}{1 \cdot 2 \cdot 3} + \frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3 \cdot 4} + \dots + \frac{n(n-1)(n-2)\dots 3 \cdot 2 \cdot 1}{1 \cdot 2 \cdot 3\dots n \cdot (n+1)}$$

$$= \frac{1}{n+1} \left\{ (n+1) + \frac{(n+1)n}{1 \cdot 2} + \frac{(n+1)n(n-1)}{1 \cdot 2 \cdot 3} + \dots + \frac{(n+1)n(n-1)\dots 3 \cdot 2 \cdot 1}{1 \cdot 2 \cdot 3\dots (n+1)} \right\}$$

$$= \frac{1}{(n+1)} \left\{ ^{(n+1)}C_1 + ^{(n+1)}C_2 + ^{(n+1)}C_3 + \dots + ^{(n+1)}C_{n+1} \right\}$$

$$= \frac{1}{(n+1)} \left\{ 2^{n+1} - 1 \right\} \text{ (from the expansion of } (1+1)^{n+1} \text{)}$$

Intervation 19
Question: Show that

$$2 \cdot C_0 + 2^2 \cdot \frac{C_1}{2} + 2^3 \cdot \frac{C_2}{3} + \dots + 2^{n+1} \frac{C_n}{n+1} = \frac{3^{(n+1)} - 1}{n+1}$$
Solution: Integrating the expansion of $(1 + x)^n$ between the limits 0 to 2.

$$\int_0^2 (1 + x)^n dx = \int_0^2 (C_0 + C_1 x + \dots + C_n x^n) dx$$

$$\Rightarrow \quad \frac{(1 + x)^{n+1}}{n+1} \Big|_0^2 = C_0 x + C_1 \frac{x^2}{2} + \dots + C_n \frac{x^{n+1}}{n+1} \Big|_0^2$$

$$\Rightarrow \quad 2 \cdot C_0 + 2^2 \cdot \frac{C_1}{2} + 2^3 \cdot \frac{C_2}{3} + \dots + 2^{n+1} \frac{C_n}{n+1} = \frac{3^{(n+1)} - 1}{n+1}$$
Alternative method

$$LH.S. = \frac{1}{n+1} \left\{ 1 + {}^{(n+1)}C_1 \cdot 2 + {}^{(n+1)}C_2 \cdot 2^2 + {}^{(n+1)}C_3 \cdot 2^3 + \dots + {}^{(n+1)}C_{n+1} \cdot 2^{(n+1)} \right\}$$

$$= \frac{1}{n+1} \left\{ 1 + {}^{(n+1)}C_1 \cdot 2 + {}^{(n+1)}C_2 \cdot 2^2 + \dots + {}^{(n+1)}C_{n+1} \cdot 2^{(n+1)} - 1 \right\}$$

$$= \frac{1}{(n+1)} \left\{ (1 + 2)^{n+1} - 1 \right\} = \frac{3^{n+1} - 1}{n+1}$$
• Product of two expansions can be used to solve some problems related to series of binomial coefficients.
Illustration 20
Cuestion: Show that $C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2 = \frac{(2n)!}{n! n!}$

which the coefficients of x^n and $\frac{1}{x^n}$ are equal and in the product of these expansions the constant term will contain the square of binomial coefficients. Consider $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + C_n x^n$

$$\left(1+\frac{1}{x}\right)^{n} = C_{0} + \frac{C_{1}}{x} + \frac{C_{2}}{x^{2}} + \dots + \frac{C_{n}}{x^{n}}$$

9

Taking the product of these two expansions and collecting the constant term in the product,

Question:

Smart N

Constant term in R.H.S. $= C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2$ = constant term in L.H.S. = constant term in $(1 + x)^n \left(1 + \frac{1}{x}\right)^n$ = constant term in $\frac{(1+x)^{2n}}{x^n}$ = coefficient of x^n in $(1+x)^{2n}$ $= {}^{2n}C_n = \frac{(2n)!}{(n!)(n!)}$ **Illustration 21** Show that $C_0^2 - C_1^2 + C_2^2 - C_3^2 + \dots + (-1)^n C_n^2$

$$= \begin{cases} 0, \text{if } n \text{ is odd} \\ \frac{(-1)^{n/2} n!}{\left(\frac{n}{2}\right)! \left(\frac{n}{2}\right)!}, \text{if } n \text{ is even.} \end{cases}$$

Consider the product of the expansion of $(1 + x)^n$ and $\left(1 - \frac{1}{x}\right)^n$ and compare the constant term. Solution: $C_0^2 - C_1^2 + C_2^2 + \dots + (-1)^n C_n^2 = \text{constant term in } (1 + x)^n \left(1 - \frac{1}{x}\right)^n$ = constant term in $\frac{(1+x)^n (x-1)^n}{x^n}$ = constant term in $\frac{(-1)^n(1-x^2)^n}{x^n}$ = coefficient of x^n in $(-1)^n (1 - x^2)^n$ = 0, if n is odd since all the terms in $(1 - x^2)^n$ contain only even power of x = coefficient of x^{2m} in $(-1)^{2m}(1-x^2)^{2m}$, if *n* is even = 2m $= (-1)^{m \ 2m} C_m = (-1)^{m \ 2m} C_m = (-1)^m \ \frac{(2m)!}{m! \ m!} = \frac{n! \ (-1)^{n/2}}{\left(\frac{n}{2}\right)! \left(\frac{n}{2}\right)!}$ **Illustration 22** Question: Show that $C_0 C_r + C_1 C_{r+1} + C_2 C_{r+2} + \dots + C_{n-r} C_n = \frac{(2n)!}{(n-r)!(n+r)!}$ Consider $(1 + x)^n = C_0 + C_1 x + C_2 x^2 + ... + C_r x^r + C_{r+1} x^{r+1} + ... + C_n x^n$ Solution: and $\left(1+\frac{1}{x}\right)^n = C_0 + \frac{C_1}{x} + \frac{C_2}{x^2} + \dots + \frac{C_r}{x^r} + \frac{C_{r+1}}{x^{r+1}} + \dots + \frac{C_n}{x^n}$ In the product of these two expansions, collecting the coefficient of x r $C_0 C_r + C_1 C_{r+1} + C_2 C_{r+2} + \dots + C_{n-r} C_n = \text{coefficient of } x^r \text{ in } \frac{(1+x)^{2n}}{x^n}$ = coefficient of x^{n+r} in $(1 + x)^{2n}$ $= {}^{2n}C_{n+r} = \frac{(2n)!}{(n+r)!(n-r)!}$

IMPORTANT RESULTS

If $(\sqrt{P}+Q)^n = I + f$ where I and n are positive integers, n being odd, and 8.1 $0 \le f < 1$, then show that $(I + f) f = k^n$ where $P - Q^2 = k > 0$ and $\sqrt{P} - Q < 1$. **Proof.** Given $\sqrt{P} - Q < 1$ $0 < (\sqrt{P} - Q)^n < 1$... $(\sqrt{P}-Q)^n = f'$ where 0 < f' < 1Now let $I + f - f' = (\sqrt{P} + Q)^n - (\sqrt{P} - Q)^n$ *.*.. RHS contains even powers of \sqrt{P} (:: *n* is odd) ••• \Rightarrow RHS is an integer Since RHS and I are integers, f – f' is also integer. :: -1 < f - f' < 1.... f - f' = 0 \Rightarrow f = f'or $(I+f) f = (I+f) f' = (\sqrt{P}+Q)^n (\sqrt{P}-Q)^n = (P-Q^2)^n = k^n$ ÷ If $(\sqrt{P} + Q)^n = I + f$ where I and n are positive integer, n being even, and 8.2 $0 \le f < 1$, then show that $(I + f)(1 - f) = k^n$ where $P - Q^2 = k > 0$ and $\sqrt{P} - Q < 1$. **Proof** : If *n* is an even integer then $(\sqrt{P}+Q)^n + (\sqrt{P}-Q)^n = I + f + f'$ Hence LHS and I are integer. f + f' is also integer. :: 0 < f + f' < 2f + f' = 1 \Rightarrow f' = (1 - f)*.*... $(I+f)(1-f) = (I+f) f' = (\sqrt{P} + Q)^n (\sqrt{P} - Q)^n$ Hence $= (P - Q^2)^n = k^n$. **Illustration 23 Question:** If $(2 + \sqrt{3})^n = I + f$ where I and *n* are positive integers and 0 < f < 1, show that (i) I is an odd integer and (ii) (I + f)(1 - f) = 1. Now $0 < 2 - \sqrt{3} < 1$, since $2 - \sqrt{3} = 0.268$ (approx.) Solution: (i) :. $0 < (2 - \sqrt{3})^n < 1$; we can take $(2 - \sqrt{3})^n$ as f'. Now $(2 + \sqrt{3})^n + (2 - \sqrt{3})^n = I + f + f'$ But L.H.S. = $2\left\{2^{n} + {}^{n}C_{2}2^{n-2}(\sqrt{3})^{2} + {}^{n}C_{4}2^{n-4}(\sqrt{3})^{4} + \dots\right\}$ = an integer (in fact an even integer) RHS. = I + f + f' = an even integer Also f + f' = 1, since f and f' are both positive proper fractions. I = an even integer -1 = an odd integer. $(I + f) (1 - f) = (I + f) (f') = (2 + \sqrt{3})^n \cdot (2 - \sqrt{3})^n$ (ii) $= (4 - 3)^n = 1^n = 1$ Illustration 24 Let $R = (5\sqrt{5} + 11)^{2n+1}$ and f = R - [R], where [] denotes the greatest integer function. **Question:** Prove that $Rf = 4^{2n+1}$

9

Smart Notes

Solution: Greatest integer function is defined as follows: [x] = greatest integer $\leq x$ In the case of positive number, x [x] = integral part of x \therefore f = R – [R] implies that f is the fractional part of R $\therefore 0 < f < 1$ Since 144 > 125 > 121, $\sqrt{125} = 5\sqrt{5}$ lies between 11 and 12. $\therefore 0 < 5\sqrt{5} - 11 < 1$ and hence $(5\sqrt{5} - 11)^{2n+1}$ will also be a proper fraction. Let $q = (5\sqrt{5} - 11)^{2n+1}$ Now [R] + f - g = R - g $=(5\sqrt{5}+11)^{2n+1}-(5\sqrt{5}-11)^{2n+1}$ $= 2 \left\{ (2n+1)C_1 (5\sqrt{5})^{2n} \cdot 11^1 + (2n+1)C_3 (5\sqrt{5})^{2n-2} \cdot 11^2 + \dots \right\}$ = an even integer Since [R] is an integer, the above implies f - g = 0 (*i.e.*) f = g. Hence $Rf = Rg = (5\sqrt{5} + 11)^{2n+1} \cdot (5\sqrt{5} - 11)^{2n+1}$ $=(125-121)^{2n+1}=4^{2n+1}$

MULTINOMIAL EXPANSION

If $n \in N$, then the general term of the multinomial expansion $(x_1 + x_2 + x_3 + \dots + x_k)^n$ is $\frac{n!}{a_1!a_2!a_3!\dots a_k!}x_1^{a_1} \cdot x_2^{a_2} \cdot x_3^{a_3}\dots x_k^{a_k},$ where $a_1 + a_2 + a_3 + \dots + a_k = n$ and $0 \le a_i \le n, i = 1, 2, 3, \dots k$. and the number of terms in the expansion are ${}^{n_{+k-1}}C_{k-1}$.

$$= (n+1) + n \cdot 2 + (n-1) \cdot 3 + \dots + 1 \cdot$$

$$= \sum_{r=0}^{n} (n-r+1) (r+1)$$

$$= \sum_{r=0}^{n} ((n+1) + nr - r^{2})$$

$$= (n+1) \sum_{r=0}^{n} 1 + n \sum_{r=0}^{n} r - \sum_{r=0}^{n} r^{2}$$

10 BINOMIAL THEOREM FOR ANY INDEX

If $n \in R$, -1 < x < 1, then

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \dots + \frac{n(n-1)(n-2)\dots(n-r+1)}{r!}x^{r} + \dots \infty$$

Note:

- (i) In the expansion if $n \in \mathbf{R}$ and n > 0 then -1 < x < 1.
- (ii) ${}^{n}C_{r}$ can not be used because it is defined only for natural number.
- (iii) If x be so small then its square and higher powers may be neglected, then approximate value of $(1 + x)^n = 1 + nx$.

Important results:

- $(1+x)^{-1} = 1 x + x^2 x^3 + \dots + (-1)^r x^r + \dots$
- $(1-x)^{-1} = 1 + x + x^2 + x^3 + \dots + x^r + \dots$
- $(1+x)^{-2} = 1 {}^{2}C_{1}x + {}^{3}C_{2}x^{2} {}^{4}C_{3}x^{3} + \dots + (-1)^{r}C_{r}x^{r} + \dots$
- $(1-x)^{-2} = 1 + {}^{2}C_{1}x + {}^{3}C_{2}x^{2} + {}^{4}C_{3}x^{3} + \dots + {}^{r+1}C_{r}x^{r} + \dots$
- $(1+x)^{-3} = 1 {}^{3}C_{1}x + {}^{4}C_{2}x^{2} {}^{5}C_{3}x^{3} + \dots + (-1)^{r} {}^{r+2}C_{r}x^{r} + \dots$
- $(1-x)^{-3} = 1 + {}^{3}C_{1}x + {}^{4}C_{2}x^{2} + {}^{5}C_{3}x^{3} + \dots + {}^{r+2}C_{r}x^{r} + \dots$

In general, the coefficient of x^n in $(1 - x)^{-k}$ is ${}^{n+k-1}C_{k-1}$

SMARTLEARN COACHING