



Date : Marks : TEST ID: XIICH0902 CHEMISTRY

COORDINATION COMPOUNDS

	Single Co	rrect Answer Type	
31. Which of the fo	ollowing is not <i>meta</i> directing		
a) —SO ₃ H	b) —NO ₂	c) —CN	d) —NH ₂
32 . Which of the fo	ollowing is an organometallic o	compound?	
a) Lithium met	hoxide	b) Lithium acetate	
c) Lithium dim	ethylamine	d) Methyl lithium	
33. Which among	the following is very strong o-	p-directing group?	
a) —Cl	b) —O <i>R</i>	c) — NH ₂	d) —NH <i>R</i>
34. The type of hyl	oridisation in tetrahedral com	<mark>plexes of m</mark> etal atom is	
a) dsp^2	b) d^2sp	c) sp^3	d) sp^2
35. Chlorobenzene	e on heating with NaOH <mark>at 300</mark>	°C under pressure gives:	
a) Phenol	b) Benzald <mark>ehyde</mark>	c) Chlorophenol	d) None of these
36. The coordinati	on number of Fe in [<mark>Fe(CN)₆]</mark> '	^{4–} [Fe(CN) ₆] ^{3–} and [FeCl ₄]	[–] are respectively.
a) 2, 3, 3	b) 6, 6, <mark>4</mark>	c) 6, 3, 3	d) 6, 4, 6
37. Consider the fo	ollowing statements		
	sition isomeris <mark>m are</mark> n <mark>ot poss</mark>		
	n is a chemica <mark>l pheno</mark> menon v	vhich is catalysed by acid a	s well as base
	are always metamers		
	are always f <mark>unctional isomers</mark>		
	ect answer by using the codes		
a) Only III is co		b) III and IV are cor	
c) I, II and III a		d) I, II and IV are co	rrect
	N of nickel in [Ni(CN) ₄] ²⁻ ?	1.24	1) 26
a) 32	b) 35	c) 34	d) 36
	ollowing alcohols is dehydrate	a most readily with conc. F	1 ₂ 50 ₄ ?
a) $p - O_2 NC_6 H_4 ($			
b) p -ClC ₆ H ₄ CH			
c) <i>p</i> -CH ₃ OC ₆ H ₂ d) C ₆ H ₅ CH(OH			
	having tetrahedral geometry	ic	
a) $[Ni(CN)_4]^{2-1}$		c) $[PdCl_4]^{2-}$	d) [NiCl ₄] ²⁻
41. Identify 'Z' in t			
$C_6H_5NH_2$	$\xrightarrow{O_2/HCl} X \xrightarrow{CuBr/HBr} Z:$		
2		Br	
Br	Br		Br
	D	/Br	
	Br		Br
a)	^{b)}	c)	d) $\uparrow \bigcirc \uparrow$
	[U]	\sim	[U]
\checkmark	\sim		\sim
		Br	
	ollowing is most acidic?	N 1 1 1	
a) <i>p</i> -cresol	b) <i>p</i> -chlorophenol	c) <i>p</i> -nitrophenol	d) <i>p</i> -aminophenol
43. Benzovlaceton	ato beryllium exhibit isomeris	sm of the type	

43. Benzoylacetonato beryllium exhibit isomerism of the type

2

d) Oxidation of thiophene

60. A complex compound of CO³⁺ with molecular formula COCl_x. *y*NH₃ gives a total of 3 ions when dissolved in water. How many Cl⁻ions satisfy both primary and secondary valencies in this complex?
a) 3 b) 1 c) 4 d) Zero

SMARTLEARN COACHING

Date : Marks :

TEST ID: XIICH0902 CHEMISTRY

COORDINATION COMPOUNDS

ANSWER KEY

31)	d	32)	d	33)	d	34)	С
35)	а	36)	b	37)	d	38)	С
39)	С	40)	d	41)	а	42)	С
43)	С	44)	d	45)	b	46)	d
47)	b	48)	d	49)	b	50)	d
51)	d	52)	d	53)	а	54)	b
55)	b	56)	С	57)	а	58)	С
59)	а	60)	b	-			

SMARTLEARN COACHING

Date : Marks :

TEST ID: XIICH0902 CHEMISTRY

COORDINATION COMPOUNDS

HINTS AND SOLUTIONS

31	(d)		
	Follow Vorlander'	s rule.	
32	(d)		
	0	-	ich metal is linked directly with carbon. CH ₃ Li, methyl
		presence of metal-carbor	bond, is an organometallic compound.
33	(d)		
	The directive influ		
~ .	-	$> NH_2 > OH > OCH_3 \approx$	$\text{NHCOCH}_3 > \text{CH}_3 > X$
34	(c)		
	Hybridisation	Shape	
	dsp^2	Square planar	
	<i>sp</i> ³	Tetrahedral	
	sp ²	Trigonal planar	
		1 1 1 1 1 1	. 31 1
20	•	ral complexes metal aton	i is sp ^o hybridised.
36	(b) The number of light	and attached to the cent	al motal ion is called the coordination number
	So, coordination n		al metal ion is called the coordination number.
	-	$(CN)_6]^{3-}$ and $[FeCl_4]^{-}$ are	6 6 and 4 respectively
37	(d)		o, o and 4 respectively.
57		may not be metamers	
38	(c)	may not be metamers	
		nber – $0.S + 2 \times C.N.$)	
		$n [Ni(CN)_4]^{2-} = (28 - 2)^{1/2}$	$+2 \times 4) = 34$
39	(c)		
		nature of methoxy gp. fac	ilitate the protonation <mark>of alcohol.</mark>
40	(d)		
		ion state of Ni is +2	
		of $Ni^{2+} = 1s^2, 2s^22p^6, 3s$	² 3p ⁶ 3d ⁸
	In Ni ²⁺ $3d$	<u>4s</u> 4p	
	11 11 11	1 1	
		1	
		ybridisation of Ni ²⁺ in [N	$\mathrm{iCl}_4]^{2-}$, the shape of $[\mathrm{NiCl}_4]^{2-}$ is tetrahedral.
41	(a) This is Can down and	/	
10	This is Sandmeyer	's reaction.	
42	(c) <i>p</i> -nitrophenols are	moro ocidia	
43	(c)	e more actuic.	
45		beryllium exhibit optical	icomorism as follows
		berymum exmort optical	1501110115111 45 10110105
	bis (benzovlacetor	nato) beryllium (II) comp	lex
		,, () tomp	•

MAHESH SIR'S NOTES - 7798364224

Smart Assignment

44	(d)
	Cl^- is a weak ligand but Cl^- cause the pairing of electron with large Pt^{2+} and consequently give dsp^2 hybridisation and square planar geometry.
45	(b)
	It is a double salt;
46	$\operatorname{FeSO}_4 \cdot (\operatorname{NH}_4)_2 \operatorname{SO}_4 \cdot \operatorname{6H}_2 \operatorname{O} \longrightarrow \operatorname{Fe}^{2+} + 2\operatorname{SO}_4^{2-} + 2\operatorname{NH}_4^+$
46	(d) Potassium ferrocyanide $K_4[Fe(CN)_6]$ will ionize as
	$K_4[Fe(CN)_6] \rightleftharpoons 4K^+ + [Fe(CN)_6]^{4-}$
	So, it will give five ions in solution
47	(b)
40	<i>cis</i> -platin is not a organimetallic compound because it has no carbon- metal bonding
48	(d) Follow mechanism of Reimer-Tiemann reaction.
49	(b)
	When $n =$ even number then for two identical ends, number of geometrical isomers
	$=2^{n-1}+2^{n/2-1}$
	$=2^{1}+2^{0}$
50	= 3 (d)
50	The characteristics of coordination number.
51	(d)
	Aliphatic amines are mo <mark>re basic</mark> than aromatic amines as the later are more stablised due to
50	resonance.
52	(d) Aromatic hydrocarbons are called arenes with general formula $C_n H_{2n-6y}$, where $n \neq 6$ and y is
	no. of cyclic rings. Benzene has one ring and $n = 6$, <i>i. e.</i> , no. of carbon atoms. Thus, general
	formula is C_6H_6 . All other aromatic hydrocarbons are derivative of benzene.
53	(a)
	Al $(OC_2H_5)_3$ doesn't have metal-carbon bond.(<i>i.e.</i> , it is not an example of organometallic compound).
54	(b) In [Co(an), Cl. 1 four isomers are possible, two geometrical isomers and two optical isomers
	In [Co(en) ₂ Cl ₂], four isomers are possible, two geometrical isomers and two optical isomers.
	Now, <i>cis</i> -isomer also show optical isomerism. <i>Cis</i> isomer exists in enantiomeric form as it is
	unsymmetrical. Plane mirror
55	(b)
	A carbon atom which is attached by four different group is called an asymmetric carbon atom or
	chiral centre
	HOOC(CHOH) ₂ COOH has two asymmetric carbon atom
56	(c)
	Each π -electron is delocalised on each C-atom.
57	(a)
50	An orange-red dye is formed with $C_6H_5NH_2$.
59	(a) Thiophene reacts more readily with H_2SO_4 than C_6H_6 giving thiophene sulphonic acid which is
	water soluble and thus, can be separated from C_6H_6 . This can not be made by fractional

(b)

Smart Assignment

distillation because thiophene and C₆H₆ both have nearly same b.p.

60

As cobalt is present as CO^{3+} and coordination number of cobalt is 6, the molecular formula of compound should be $CoCl_3$. yNH_3 . Now, as it gives a total of three ions when dissolved in water, its structural formula must be

 $[CoCl(NH_3)_5]Cl_2$

 $[CoCl(NH_3)_5]Cl_2 \rightleftharpoons [CoCl(NH_3)_5]^{2+} + 2Cl^{-1}$

Thus, only one Cl^- ion is satisfying both primary and secondary valency of Co^{3+} in this compound.

SMARTLEARN COACHING