

SUBJECT : CHEMISTRY DPP No. : 1 **CLASS: XIth** DATE:

	Topic	:-SOLUTION			
1.	A solution of two liquids boils at a temper binary solution shows a) Negative deviation from Raoult's law b) Positive deviation from Raoult's law c) No deviation from Raoult's law d) Positive or negative deviation from Rao				
2.	Vapour pressure of pure 'A' is 70 mm of Hg at 25° C. It from an ideal solution with 'B' in which mole fraction of A is 0.8. If the vapour pressure of the solution is 84 mm of Hg at 25° C, the vapour pressure of pure 'B' at 25° C is				
	a) 28 mm b) 56 mm	c) 70 mm	d) 140 mm		
3.	Abnormal colligative properties are obserdilute solution a) Is a non-electrolyte c) Associates of dissociates	rved only when the dissolved no b) Offers an intense o d) Offers no colour	_		
4.	As a result of osmosis, the volume of the cases b) Gradually decreases c) Suddenly increases d) None of these	concentrated solution :			
5.	At a suitable pressure near the freezing po a) Only ice b) Ice and water c) Ice and vapour d) Ice, water and vapours, all existing side		ARN 1G		
6.	Which of the following concentration units is independent of temperature?				
	a) Normality b) Molarity	c) Molality	d) ppm		
7.	In cold countries, ethylene glycol is added a) Lowering in boiling point b) Reducing viscosity	l to water in the radiators of car	rs during winters. It results in		

- - c) Reducing specific heat
 - d) Lowering in freezing point
- Calculate the molal depression constant of a solvent which has freezing point 16.6°C and latent heat of fusion $180.75 Jg^{-1}$.
 - a) 2.68

b) 3.86

c) 4.68

Smart DPPs

9.	The freezing point depression constant for water is $1.86~\rm K~kgmol^{-1}$. If $45~\rm g$ of ethylene glycol is mixed with $600~\rm g$ of water , the freezing point of the solution is						
	a) 2.2 K	b) 270.95 K	c) 273 K	d) 275.35 K			
10.	. The movement of solvent molecules through a semipermeable membrane is called						
	a) Electrolysis	b) Electrophoresis	c) Osmosis	d) Cataphoresis			
11.	An aqueous solution of methanol in water has vapour pressure						
	a) Less than that of water		b) More than that of water				
	c) Equal to that of water		d) Equal to that of methanol				
12.	Which pair shows a contraction in volume on mixing along with evolution of heat?						
	a) $CHCl_3 + C_6H_6$	b) H ₂ O + HCl	c) $H_2O + HNO_3$	d) All of these			
12	The management of	vector at 20°C is 17 C man I	I.a.				
13.	The vapour pressure of water at 20°C is 17.5 mmHg. If 18 g of glucose ($C_6H_{12}O_6$) is added to 178.2 g of water at 20°C, the vapour pressure of the resulting						
	solution will be						
	a) 17.675 mmHg	b) 15.750 mmHg	c) 16.500 mmHg	d) 17.325 mmHg			
14.	.4. At 80°C, the vapour pressure of pure liquid A' is 520 mm Hg and that of pure liquid B' is 1000 mm Hg.						
	If a mixture of solution 'A' and 'B' boils at 80°C and 1 atm pressure, the amount of 'A' in the mixture is						
	(1 atm = 760 mm Hg)						
	a) 50 mol per cent	b) 52 mol per cent	c) 34 mol per cent	d) 48 mol per cent			
15.	Van't Hoff factor(i):						
a) Is less than one in case of dissociation							
	b) Is more than one in case of association						
	c) $i = \frac{\text{normal molecular mass}}{1}$						
	observed molecular mass observed molecular mass						
	d) $i = \frac{1}{\text{normal molecula}}$						
16	Following solutions at the same temperature will be isotonic:						
10.	a) 3.42 g of cane sugar in one litre water and 0.18 g of glucose in one litre water						
b) 3.42 g of cane sugar in one litre water and 0.18 g of glucose in 0.1 litre water							
	c) 3.42 g of cane sugar in one litre water and 0.585 g of NaCl in one litre water						
	d) 3.42 g of cane sugar in one litre water and 1.17 g of NaCl in one litre water						
17.	7. The osmatic pressure of a 5% (wt./vol) solution of cane sugar at 150°C is						
	a) 3.078 atm	b) 4.078 atm	c) 5.078 atm	d) 2.45 atm			
40	Pol la la la la	11.1	· M Call	1 1 1 1 111			
18.		s an antifreeze in a cold cl		ter = $1.86 \text{ K kg mol}^{-1}$. and			
	molar mass of ethylene g		at 0 C will be (Nf101 wa	ter = 1.00 K kg mor . and			
	a) 804.32 g	b) 204.30 g	c) 400.00 g	d) 304.60 g			
19.		benzene is 0.2 then find	_				
20	a) 3.2 When a solute is added in	b) 2	c) 4	d) 3.6			
20.	when a solute is added	in two minniscible solvent	s, it distributes itself betv	veen two liquids so that its			

concentration in first liquid is c_1 and that in the second liquid is c_2 . If the solute forms a stable trimer in the first liquid, the distribution law suggests that :

- a) $3c_1 = c_2$
- b) $c_1/\sqrt[3]{c_2}$ = constant
- c) $c_1/3 = c_2$
- d) $c_2/\sqrt[3]{c_1} = \text{constant}$

SMARTLEARN COACHING