

9.	Limiting molar ionic conductivities of a uni-univalent electrolyte are 57 and 73. The limiting molar conductivity of the solution will be :				
	a) 130 <i>S</i> cm ² mol ⁻¹	b) $65 S \text{ cm}^2 \text{ mol}^{-1}$	c) 260 <i>S</i> cm ² mol ⁻¹	d) 187 $S \mathrm{cm}^2 \mathrm{mol}^{-1}$	
10.	Molten NaCl conducts ele	ce of :			
	a) Free electrons	b) Free molecules	c) Free ions	d) Atoms of Na and Cl	
11.	The emf of the cell, $(E_{Zn^{2+}/Zn} = -0.76 V)$ Zn / Zn ²⁺ (1 M) Cu ²⁺ (1 M) Cu $(E_{Cu^{2+}/Cu} = +0.34 V)$ will be				
	a) +1.10 V	b) -1.10 V	c) +0.42 V	d) -0.42 V	
12.	Which represents a concentration cell?				
	a) $\frac{PtH_2 HCI HCI PtH_2}{c_1 c_2}$	b) $\frac{PtH_2 HCl Cl_2 Pt}{c_1}$	c) Zn Zn ²⁺ Cu ²⁺ Cu	d) Fe Fe ²⁺ Cu ²⁺ Cu	
13.	In electrolysis of aqueous copper sul <mark>phate, the gas at anode</mark> and cathode are				
	a) O_2 and H_2	b) H_2 and O_2	c) SO_2 and H_2	d) SO_3 and O_2	
14.	Consider the reaction, $M^{n+}(aq) + ne \rightarrow M^0(s)$. The standard reduction potential values of the metals M_1, M_2 and M_3 are $-0.34 \text{ V}, -3.05 \text{ V}$ and -1.66 V respectively. The order of their reducing power will be				
	a) $M_1 > M_2 > M_3$	b) $M_3 > M_2 > M_1$	c) $M_1 > M_3 > M_2$	d) $M_2 > M_3 > M_1$	
15.	The charge required to liberate one gram equivalent of an element is				
	a) 96500 F	b) 1 F	c) 1 C	d) None of these	
16.	What will be pH of aqueo between graphite electro	ous solution of electrolyte odes?	blyte in electrolytic cell during electrolysis of CuSO ₄ (<i>aq</i>)		
	a) pH = 14.0	b) pH > 7.0	c) pH < 7.0	d) pH = 7.0	
	5M/	RT	LE/	ARN	
17.	In an electrolytic cell, the anode and cathode are respectively represented as :				
	 a) Positive electrode, negative electrode b) Negative electrode, positive electrode c) Both positive and negative electrode d) None of the above 				
18.	The cell reaction is spontaneous, when				
	a) $E_{\rm red}^{\circ}$ is negative	b) E_{red}° is positive	c) ΔG° is negative	d) ΔG° is positive	
19.	The emf of the cell Mg Mg ²⁺ (0.01 M) Sn ²⁺ (0.1 M) Sn at 298 K is (Given, $E_{Mg^{2+},Mg}^{\circ} = -2.24 \text{ M} - 2.24 \text{ M} E_{Mg^{2+},Mg}^{\circ} = -0.14 \text{ M}$				
	-2.34 v, -2.34 v, E _{Sn²⁺,S} a) 2.23 V	$c_{n} = -0.14 \text{ V}$ b) 1.86 V	c) 1.56 V	d) 3.26 V	
20	When an aqueous solution of lithium chloride is electrolysed using graphite electrodes .				

20. When an aqueous solution of lithium chloride is electrolysed using graphite electrodes :a) pH of the resulting solution increases

PPs

Smart D

- b) pH of the resulting solution decreases
- c) As the current flows, pH of the solution around the cathode increases
- d) None of the above

SMARTLEARN COACHING