

	DPP DAILY PRACTICE PROBLEMS							
C	CLASS : XIIтн DATE :			SUBJECT : PHYSICS DPP NO. : 1				
Topic :-Atoms								
1.	An electron of an atom transits from n_1 to n_2 . In which of the following maximum frequency of photom be emitted?							
	a) $n_1=1$ to $n_2=2$	b) n_1 =2 to n_2 =1	c) $n_1=2$ to $n_2=6$	d) n_1 =6 to n_2 =2				
2.	If <i>a</i> is radius of first Bohr a) 3 <i>a</i>	orbit in hydrogen atom, th b) 9 a	e radius of the third orb c) 27 a	it is d) 81 <i>a</i>				
3.	An electron collides with hydrogen atom in this ine	a hydrogen atom in its gro elastic collision is(neglect t	ound state and excites it t he recoiling of hydrogen	to <i>n</i> =3. The energy given to atom)				
	a) 10.2 eV	b) 12.1 eV	c) 12.5 eV	d) None of these				
4.	When a hydrogen atom is the atom goes from $n =$ a) 1.275 eV	s bomb <mark>ared,</mark> the atom is ex 4 state to the ground state b) 12.75 eV	xcited to then $n = 4$ states is c) 5 eV	e. The energy released, when d) 8 eV				
5.	Excitation energy of a hyd	drogen like atom in its first	excitation state is 40.8 e	eV. Energy needed to remove				
	the electron from the ion a) 40.8 eV	in ground state is b) 27.2 eV	c) 54.4 eV	d) 13.6 eV				
6.	The spectral series of the a) Paschen	hydrogen atom that lies in b) Balmer	the visible ragion of the c) Lyman	e electromagnetic spectrum d) Brackett				
7.	An alpha nucleus of energy	$\frac{1}{2}mv^2$ bombards a heaveloc $\frac{1}{2}mv^2$ bombards a heaveloc $\frac{1}{2}mv^2$	y nuclear target of charg	e <i>Ze</i> . Then the distance of				
	a) v^2	b) 1/m	c) $1/v^4$	d) 1/Ze				
8.	In terms of Bohr radius a_{o} a) 4 a_{o}	o, the radiu <mark>s of</mark> the second b) 8 a _o	Bohr orbit of a hydrogen c) $\sqrt{2} a_o$	h atoms is given by d) 2 a_o				
٥	The Kinetic energy of the	electron in an orbit of rad	ius r in hydrogon atom i	(a — electronic charge)				
5.	a) $\frac{e^2}{r^2}$	b) $\frac{e^2}{2r}$	c) $\frac{e^2}{r}$	d) $\frac{e^2}{2r^2}$				
10.	If the binding energy of the electron in a hydrogen atom is 13.6 eV, the energy required to remove the electron from the first excited state of Li ²⁺ is							
	a) 30.6 eV	b) 13.6 eV	c) 3.4 eV	d) 122.4 eV				
11.	The ratio of minimum to a) 5:9	maximum wavelength in E b) 5:36	almer series is c) 1:4	d) 3:4				

MAHESH SIR'S NOTES - 7798364224

12.	2. V_1 is the frequency of the series limit of Lyman series, V_2 is the frequency of the first line of Ly and V_3 is the frequency of the series limit of the Balmer series. Then						
	a) $v_1 - v_2 = v_3$	b) $v_1 = v_2 - v_3$	c) $\frac{1}{v_2} = \frac{1}{v_1} + \frac{1}{v_3}$	d) $\frac{1}{v_1} = \frac{1}{v_2} + \frac{1}{v_3}$			
13.	The orbital frequency of an electron in the hydrogen atom is proportional to						
	a) n ³	b) n^{-3}	c) n	d) <i>n</i> ⁰			
14.	Given that in a hydrogen atom, the energy of <i>n</i> th orbit $E_n = -\frac{13.6}{n^2}$ eV. The amount of energy required send electron from first orbit to second orbit is						
	a) 10.2 eV	b) 12.1 eV	c) 13.6 eV	d) 3.4 eV			
15.	The ratio of minimum to r	naximum wavelength in Ba	almer series is	d) 2. 4			
	a) 5:9	0) 5:36	c) 1:4	0) 3:4			
16.	Which state of triply ionised beryllium (Be ³⁺) has the same orbital radius as that of ground state of hydrogen?						
	a) $n = 3$	b) <i>n</i> = 4	c) $n = 1$	d) <i>n</i> = 2			
17.	The spin-orbit interaction has no effect in the level of the hydrogen atom						
17.	a) <i>s</i> —level	b) p –level	c) d —level	d) f —level			
18.	If the radii of nuclei of ${}_{13}$ Al ²⁷ and ${}_{30}$ Zn ⁶⁴ are R_1 and R_2 respectively, then $\frac{R_1}{R}$ is equal to						
	27	h) 64	4	J) 3			
	$\frac{1}{64}$	$\frac{10}{27}$	$\frac{c}{3}$	$(1)\frac{1}{4}$			
19	For ionicing on excited hydrogen atom, the energy required (in eV) will be						
15.	a) A little less than 13.6	b) 13.6	c) More than 13.6	d) 3.4 or less			
20. Let the PE of hydrogen atom in the ground state be zero. Then its total energy in the first excited state wil							
	be						
	a) 27.2 eV	b) 23.8 eV	c) 12.6 eV	d) 10.2 eV			