

12. The electron in the hydrogen atom jumps from excited state (n = 3) to its ground state (n = 1) and the photons thus emitted irradiate a photosensitive material. If the work function of the material is

1

Smart DPPs

	5.1 eV, the stopping potential is estimated to be (the energy of the electron in n^{th} state $E_n = -\frac{13.6}{n^2} eV$)			
	a) 5.1 V	b) 12.1 V	c) 17.2 V	d) 7 V
13.	The number of α -particles and β – particles respectively emitted in the reaction $_{88}A^{196} \rightarrow _{78}B^{164}$ are			
	a) 8 and 8	b) 8 and 6	c) 6 and 8	d) 6 and 6
14.	An electron passing through a potential difference of 4.9 V collides with a memory atom and tra			
	it to the first excited state. What is the wavelength of a photon corresponding to the transition of the mercury atom to its normal state			
	a) 2050 Å	b) 2240 Å	c) 2525 Å	d) 2935 Å
15.	The half -life period of a radioactive substance is 3 days. Three fourth of substance decays in			
	a) 3 days	b) 6 days	c) 9 days	d) 12 days
16.	What is the <i>Q</i> -value of the reaction			
	$P + {}^{7}\text{Li} \rightarrow {}^{4}\text{He} + {}^{4}\text{He}$			
	The atomic masses of ¹ H, ⁴ He and ⁷ Li are 1.007825 u, 4.002603 u and 7.016004 u respectively			
	a) 17.35 MeV	b) 18.06 MeV	c) 177.35 MeV	d) 170.35 MeV
17.	If one starts with one curie of radioactive substance $(T_{1/2} = 12hrs)$ the activity left after a period of 1			
	week will be about			
	a) 1 curie	b) 120 micro curie	c) 60 micro curie	d) 8 mili curie
18.	If the half life of a radioactive sample is 10 <i>hours</i> , its mean life is			
	a) 14.4 <i>hours</i>	b) 7.2 <i>hours</i>	c) 20 hours	d) 6.93 <i>hours</i>
19.	The half-life of ²¹⁵ At is 100 μ s. The time taken for the radioactivity of a sample of ²¹⁵ At to decay to $\frac{1}{16}$			
	th of its initial value is			
	a) 400 µs	b) 6.3 μs	c) 40 µs	d) 300 µs
20.	Half life of a radio-active sub <mark>stance is</mark> 20 <i>minutes</i> . <mark>The time between</mark> 20% and 80% decay will be			
	a) 20 minutes	b) 40 minutes	c) 30 minutes	d) 25 <i>minutes</i>

SMARTLEARN COACHING