

CLASS: XIIth DATE:

SUBJECT: MATHS

DPP NO.: 1

Topic:- relations and functions

1} and $f : A \rightarrow A$ such that

- f(x) = x|x|, then f is a) A bijection
 - b) Inia ation book or at a
 - b) Injective but not surjectivec) Surjective but not injective
 - d) Neither injective nor surjective
- 2. The domain of the function $\sin^{-}\left(\log_{2}\frac{x^{2}}{2}\right)$ is
 - a) $[-1, 2]-\{0\}$
- b) [-2, 2]-(-1, 1)
- c) [-2, 2]-{0}
- d) [1, 2]
- 3. If f(x) = ax + b and g(x) = cx + d, then f(g(x)) = g(f(x)) is equivalent to
 - a) f(a) = f(c)
- b) f(b) = g(b)
- c) f(d) = g(b)
- d) f(c) = g(a)
- 4. The period of the function $f(x) = \sin^4 3x + \cos^4 3x$ is
 - a) $\pi/2$

- b) $\pi/3$
- c) $\pi/6$

- d) None of these
- 5. Given $f(x) = \log_{10} \left(\frac{1+x}{1-x} \right)$ and $g(x) = \frac{3x+x^3}{1+3x^2}$, then $f \circ g(x)$ equals
 - a) -f(x)
- b) 3 f(x)
- c) $[f(x)]^3$
- d) None of these
- 6. Which of the following functions is not an are not an injective map(s)?
 - a) $f(x) = |x + 1|, x \in [-1, \infty)$
 - b) $g(x) = x + \frac{1}{x}, x \in (0, \infty)$
 - c) $h(x) = x^2 + 4x 5, x \in (0, \infty)$
 - $d) h(x) = e^{-x}, x \in [0, \infty)$
- 7. If $f: R \to R$ and $g: R \to R$ are defined by f(x) = x [x] and g(x) = [x] for $x \in R$, where [x] is the greatest integer not exceeding x, then for every $x \in R$, f(g(x)) is equal to
 - a) *x*

b) (

- c) f(x)
- d) g(x)

- 8. The domain of definition of $f(x) = \sqrt{\frac{\log_{0.3}|x-2|}{|x|}}$, is
 - a) $[1,2) \cup (2,3]$
- b) [1,3]
- c) R (1,3]
- d) None of these

- 9. $f: R \to R$ given by $f(x) = 5 3 \sin x$, is
 - a) One-one
- b) Onto
- c) One-one and onto
- d) None of these

- 10. If f(x + 2y, x 2y) = xy, then f(x, y) equals
 - a) $\frac{x^2 y^2}{8}$
- b) $\frac{x^2 y^2}{4}$
- c) $\frac{x^2 + y^2}{4}$
- d) $\frac{x^2-y^2}{2}$

- 11. If $f: R \to R$ is defined as $f(x) = (1-x)^{1/3}$, then $f^{-1}(x)$ is a) $(1-x)^{-1/3}$ b) $(1-x)^3$ c) $1-x^3$
 - a) $(1-x)^{-1/3}$

- d) $1 x^{1/3}$

- 12. If f(x + 2y, x, x 2y) = xy, then f(x, y) equals a) $\frac{x^2 y^2}{8}$ b) $\frac{x^2 y^2}{4}$
- c) $\frac{x^2 + y^2}{4}$
- d) $\frac{x^2 y^2}{2}$
- 13. Let $f: [4, \infty[\to [4, \infty[$ be defined by $f(x) = 5^{x(x-4)}$ then $f^{-1}(x)$

 - a) $2 \sqrt{4 + \log_5 x}$ b) $2 + \sqrt{4 + \log_5 x}$ c) $(\frac{1}{5})^{x(x-4)}$
- d) Not defined
- 14. If $f: [2,3] \to R$ is defined by $f(x) = x^3 + 3x 2$, then the range f(x) is contained in the interval
 - a) [1, 12]
- b) [12, 34]
- c) [35, 50]
- d) [-12, 12]

- 15. The period of $\sin^2 \theta$, is
 - a) π^2

b) π

c) 2π

- d) $\pi/2$
- 16. If $n \in N$, and the period of $\frac{\cos nx}{\sin(\frac{x}{n})}$ is 4π , then n is equal to
 - a) 4

c) 2

d) 1

- 17. Foe real x, let $f(x) = x^3 + 5x + 1$, then
 - a) f is one-one but not onto R

b) f is onto R but not one-one

c) *f* is one-one and onto *R*

- d) f is neither one-one nor onto R
- 18. The range of the function $f(x) = \frac{1}{2-\cos 3x}$, is
 - a) [-1/3, 0]
- b) R

- c) [1/3, 1]
- d) None of these
- 19. Let $A = \{2, 3, 4, 5, ..., 16, 17, 18\}$. Let be the equivalence relation on $A \times A$, cartesian product of A and A, defined by $(a, b) \approx (c, d)$ if ad = bc, then the number of ordered pairs of the equivalence class of (3, 2) is c) 6 a) 4 b) 5
- 20. Let n be the natural number. Then, the range of the function $f(n) = 8 n_{P_n-4}$, $4 \le n \le 6$, is a) {1, 2, 3, 4}
 - b) {1, 2, 3, 4, 5, 6}
- c) {1, 2, 3}
- d) {1, 2, 3, 4, 5}