1.

Subject: Maths Class: XIth DPP No.:1 Date:

Topic :-Application of Derivatives

1.	The a) 0	maximum value of tl	he function $f(x)$ given b) $4/27$		$(-1)^2, 0 < x < (-1)^2$	< 2, is d) 1/4		
2.	For a given integer k , in the interval $\left[2\pi k + \frac{\pi}{2}, 2\pi k - \frac{\pi}{2}\right]$ the graph of $\sin x$ is							
	a) Increasing from -1 to 1				b) Decreasing from -1 to 0			
	c) Decreasing from 0 to 1			d) None of the above				
3.	If θ i	If θ is the semi vertical angle of a cone of maximum volume and given slant height, then $\tan \theta$ is given						
	by							
	a)		b) 1	c) $\sqrt{2}$		d) $\sqrt{3}$		
4.	The value of <i>b</i> for which the function $f(x) = \sin x - bx + c$ is decreasing in the interval $(-\infty, \infty)$ is							
	give	·=·	L) 1 > 1	-> 1 > 1		-1\ 1 1		
5.	a) <i>b</i>		b) $b \ge 1 + 3x^2 - 12x + 1$ decre	c) $b > 1$	awral	$d) b \leq 1$		
5.	a) (2		b) $(1, 2)$	c) (-2, 1)	ervar	d) (-3, -2)		
6.			$-\log(\sqrt{1+x^2}-x)$, then	, , ,		u) (-3, -2)		
.		$x = 2x + \cot x + \cot x$ icreases on R	$-\log(\sqrt{1+x}-x)$, the	11) (x)				
	b) Decreases in [0, ∞)							
	c) Neither increases nor decreases in (0, ∞)							
	d) None of these							
7.	The maximum value of $f(x) = 3\cos^2 x + 4\sin^2 x + \cos\frac{x}{2} + \sin\frac{x}{2}$, is							
			–		2	d) $2 + \sqrt{2}$		
8.	If a^2	$x^4 + b^2 y^4 = c^6$, then	b) $3 + \sqrt{2}$ n maximum value of xy	is		VRN		
	V	ub S						
	b) $\frac{c^2}{ab}$ c) $\frac{c}{\sqrt{2}}$ d) $\frac{c}{2a}$	<u> </u>						
	ai	c^3						
	c)	$\frac{1}{2ah}$						
	. · · · · · ·	.3						
	a) <u> </u>	$\frac{\overline{ab}}{ab}$						
9.	A stone is dropped into a quiet lake. If the waves moves in circles at the rate of 30cm/sec when the							
	radius is 50 m, the rate of increase of enclosed area is							
		$0 \pi \mathrm{m}^2/\mathrm{sec}$	b) 30 m ² /sec			d) None of these		
10.			ent to the curve $x = t$ c b) $y = 0$	•	_			
11.	a) x		. 5	c) $x + y =$		d) $x - y = 0$ on the radius is increasing		
11.		e rate of 2 cm/sis pr		c of a spilere of	i i auiusi ,wile	in the ratius is increasing		
	1	, , , , , , , , , , , , , , , , , , ,	- ·	۵) س		d\2		
	a) $\frac{1}{r}$		b) $\frac{1}{r^2}$	c) <i>r</i>		d) r^2		
12.	The	maximum value of ($(1/x)^x$, is					
		1 MALIFOLI CID'S NOTES 7700004004						
		1 MAHESH SIR'S NOTES - 7798364224						

a) k > 1

Smart DPPs

	a) <i>e</i>	b) <i>e^e</i>	c) $e^{1/e}$	d) $(1/e)^{1/e}$			
13.	If $f(x) = 2x^3 - 21x^2 + 36x - 30$, then which one of the following is correct						
	a) $f(x)$ has minimum $at x = 1$		b) $f(x)$ has maximu	b) $f(x)$ has maximum $at x = 6$			
	a) $f(x)$ has minimum $at x = 1$ c) $f(x)$ has maximum $at x = 1$		d) $f(x)$ has maxima	d) $f(x)$ has maxima or minima			
14.	An edge of a variable cube is increasing at the rate of 10cm/s. How fast the volume of the cube will						
	increase when the edg		0.	0			
		b) 75 cm $^{3}/_{s}$					
15.	The tangents to the curve $x = a(\theta - \sin \theta)$, $y = a(1 + \cos \theta)$ at the points $\theta = (2k + 1)\pi$, $k \in Z$ are						
	parallel to:						
		b) $y = -x$		d) x = 0			
16.	The normal to the curve $5x^5 - 10x^3 + x + 2y + 6 = 0$ at $P(0, -3)$ meets the curve again at the point						
		b) $(1,-1), (-1,-5)$					
17.	The normal to the curve represented parametrically by $x = a(\cos \theta + \theta \sin \theta)$ and $y = a(\sin \theta - \theta)$						
	$\theta \cos \theta$) at any point θ , is such that it						
	a) Makes a constant angle with x-axis						
	b) Is at a constant distance from the ori <mark>gin</mark>						
	c) Passes through the origin						
10	d) Satisfies all the three conditions						
18.	If $f(x) = \begin{cases} 3x^2 + 12x - 1, -1 \le x \le 2, \\ 37 - x, 2 < x \le 3 \end{cases}$, then						
	a) $f(x)$ is increasing in $[-1,2]$						
	b) $f(x)$ is continuous in $[-1,3]$						
	c) $f(x)$ is maximum at $x = 2$						
	d) All the above						
19.	The value of c, in the Lagrange's Mean value theorem $\frac{f(b)-f(a)}{b-a}=f'(c)$, for the function $f(x)=$						
	b a						
	x(x-1)(x-2) in the interval [0, 1/2], is						
	a) $\frac{1}{4}$	b) $1 - \frac{\sqrt{21}}{6}$	c) $\frac{9}{8}$	d) $1 + \frac{\sqrt{21}}{6}$			
	4	6	8	6			

SMARTLEARN COACHING

b) k > -1 c) k < 1

20. If $f(x) = kx - \sin x$ is monotonically increasing, then

d) k < -1