

CLASS: XIIth DATE:

SUBJECT: MATHS DPP NO.: 1

Topic: - vector algebra

1. If $\vec{a} + \vec{b} + \vec{c} = 0$, $|\vec{a}| =$

 $|\vec{b}| = 5, |\vec{c}| = 7$, then the angle

between \vec{a} and \vec{b} is

a) $\pi/6$

b) $2\pi/3$

c) $5\pi/3$

d) $\pi/3$

2. If \vec{a} is perpendicular to \vec{b} and $\vec{c}|\vec{a}|=2$, $|\vec{b}|=3$, $|\vec{c}|=4$ and the angle between \vec{b} and \vec{c} is $\frac{2\pi}{3}$, then $[\vec{a} \ \vec{b} \ \vec{c}]$ is equal to

a) $4\sqrt{3}$

b) $6\sqrt{3}$

c) $12\sqrt{3}$

d) $18\sqrt{3}$

3. The position vectors of the points \mathbf{A} , \mathbf{B} , \mathbf{C} are $(2\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}})$, $(3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + \hat{\mathbf{k}})$ and $(\hat{\mathbf{i}} + 4\hat{\mathbf{j}} - 3\hat{\mathbf{k}})$ respectively. These points

a) Form an isosceles triangle

b) Form a right angled triangle

c) Are collinear

d) Form a scalene triangle

4. If $\vec{a} = 4\hat{i} + 6\hat{j}$ and $\vec{b} = 3\hat{j} + 4\hat{k}$, then the vector form of component of \vec{a} along \vec{b} is

a) $\frac{18}{10\sqrt{3}}(3\hat{j} + 4\hat{k})$ b) $\frac{18}{25}(3\hat{j} + 4\hat{k})$ c) $\frac{18}{\sqrt{3}}(3\hat{j} + 4\hat{k})$

5. Two vectors \vec{a} and \vec{b} are non-collinear. If vectors $\vec{c} = (x-2)\vec{a} + \vec{b}$ and $\vec{d} = (2x+1)\vec{a} - \vec{b}$ are collinear, then x =

a) 1/3

b) 1/2

c) 1

6. Through the point $P(\alpha, \beta, \gamma)$ a plane is drawn at right angles to OP to meet the coordinate axes are A, B, C respectively. If $\overrightarrow{OP} = p$ then equation of plane $\overrightarrow{A}, \overrightarrow{B}, \overrightarrow{C}$ is

a) $\alpha x + \beta y + \gamma z = p$

b) $\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = p$

c) $2\alpha x + 2\beta y + 2\gamma z = p^2$

d) $\alpha x + \beta y + \gamma z = p^2$

7. If \overrightarrow{ABCDEF} is a regular hexagon with $\overrightarrow{AB} = \overrightarrow{a}$ and $\overrightarrow{BC} = \overrightarrow{b}$, then \overrightarrow{CE} equals

a) $\vec{b} - \vec{a}$

c) $\vec{\mathbf{b}} - 2\vec{\mathbf{a}}$

d) None of these

8. A unit vector perpendicular to both $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$, is

a) $\hat{\imath} - \hat{\jmath} + \hat{k}$

b) $\hat{i} + \hat{j} + \hat{k}$

c) $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$

d) $\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{2}}$

9. Let ABCD be the parallelogram whose sides AB and AD are represented by the vectors

 $2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} - 5\hat{\mathbf{k}}$ and $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ respectively. Then, if $\vec{\mathbf{a}}$ is a unit vector parallel to $\overrightarrow{\mathbf{AC}}$, then $\vec{\mathbf{a}}$ equal to

a) $\frac{1}{3}(3\hat{i} - 6\hat{j} - 2\hat{k})$

b) $\frac{1}{2}(3\hat{i} + 6\hat{j} + 2\hat{k})$

c) $\frac{1}{7}(3\hat{\imath} - 6\hat{\jmath} - 3\hat{k})$ d) $\frac{1}{7}(3\hat{\imath} + 6\hat{\jmath} - 2\hat{k})$

Smart DPPs

10.	The value of b such that the scalar product of the vector $\hat{i} + \hat{j} + \hat{k}$ with the unit vector parallel to th
sun	of the vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $b\hat{i} + 2\hat{j} + 3\hat{k}$ is one, is

a) -2

b) -1

c) 0

d) 1

11. If \vec{a} , \vec{b} , \vec{c} are non-coplanar vectors and $x\vec{a} + y\vec{b} + z\vec{c} = 0$, then

- a) At least of one of x, y, z is zero
- b) x, y, z are necessarily zero
- c) None of them are zero
- d) None of these
- 12. The ratio in which $\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$ divides the join of $-2\hat{\imath} + 3\hat{\jmath} + 5\hat{k}$ and $7\hat{\imath} \hat{k}$, is
 - a) 1 : 2
- b) 2:3
- c) 3:4
- d) 1:

13. For any three vectors
$$\vec{a}$$
, \vec{b} , \vec{c} the expression $(\vec{a} - \vec{b}) \cdot \{(\vec{b} - \vec{c}) \times (\vec{c} - \vec{a})\}$ equals

- a) $\left[\vec{a}\vec{b}\vec{c}\right]$
- b) $2[\vec{a}\vec{b}\vec{c}]$
- c) $\left[\vec{a}\vec{b}\vec{c}\right]^2$
- d) None of these

14. The point of intersection of the lines
$$\vec{\mathbf{r}} = 7\hat{\mathbf{i}} + 10\hat{\mathbf{j}} + 3\hat{\mathbf{k}} + s(2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 4\hat{\mathbf{k}})$$
 and $\vec{\mathbf{r}} = 3\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + 7\hat{\mathbf{k}} + t(\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}})$ is

- a) $\hat{\mathbf{i}} + \hat{\mathbf{j}} \hat{\mathbf{k}}$
- b) $2\hat{\mathbf{i}} \hat{\mathbf{j}} + 4\hat{\mathbf{k}}$
- c) $\hat{\mathbf{i}} \hat{\mathbf{j}} + \hat{\mathbf{k}}$
- d) $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$
- 15. let \vec{p} and \vec{q} be the position vectors of P and Q respectively, with respect to O and $|\vec{p}| = p$, $|\vec{q}| = q$. The points R and S divide PQ internally and externally in the ratio 2:3 respectively. If $O\vec{R}$ and $\vec{O}S$ are perpendicular, then
 - a) $9p^2 = 4q^2$
- b) $4p^2 = 9q^2$
- c) 9p = 4q
- d) 4p = 9q

16. If
$$\vec{a} = \hat{i} + \hat{j}$$
 and $\vec{b} = 2\hat{i} - \hat{k}$ are two vectors, then the point of intersection of two lines $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$ is

- a) $\hat{\mathbf{i}} + \hat{\mathbf{j}} \hat{\mathbf{k}}$
- b) $\hat{\mathbf{i}} \hat{\mathbf{j}} + \hat{\mathbf{k}}$
- c) $3\hat{\mathbf{i}} + \hat{\mathbf{j}} \hat{\mathbf{k}}$
- d) $3\hat{\mathbf{i}} \hat{\mathbf{j}} + \hat{\mathbf{k}}$

17. If
$$\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B} \times (\vec{C} \times \vec{A})$$
 and $[\vec{A} \vec{B} \vec{C}] \neq 0$, then $\vec{A} \times (\vec{B} \times \vec{C})$ is equal to

a) $\vec{0}$

- b) $\vec{A} \times \vec{B}$
- c) $\vec{\mathbf{B}} \times \vec{\mathbf{C}}$
- d) $\vec{\mathbf{C}} \times \vec{\mathbf{A}}$

18. If \vec{a} and \vec{b} are two vectors, then the equality $|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}|$ holds

- a) Only if $\vec{a} = \vec{b} = \vec{0}$
- b) For all \vec{a} , \vec{b}
- c) Only if $\vec{a} = \lambda \vec{b}$, $\lambda > 0$ or $\vec{a} = \vec{b} = \vec{0}$
- d) None of these

19. Let
$$\vec{\mathbf{a}} = \hat{\mathbf{i}} - \hat{\mathbf{k}}$$
, $\vec{\mathbf{b}} = x\hat{\mathbf{i}} + \hat{\mathbf{j}} + (1 - x)\hat{\mathbf{k}}$ and $\vec{\mathbf{c}} = y\hat{\mathbf{i}} + x\hat{\mathbf{j}} + (1 + x - y)\hat{\mathbf{k}}$. Then $[\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}]$ depends on a) neither x nor y b) both x and y c) only x d) only y

20. If the position vectors of three points
$$A$$
, B , C are respectively $\hat{\imath} + \hat{\jmath} + \hat{k}$, $2\hat{\imath} + 3\hat{\jmath} - 4\hat{k}$ and $7\hat{\imath} + 4\hat{\jmath} + 9\hat{k}$, then the unit vector perpendicular to the plane of triangle ABC is

- a) $31\hat{i} 18\hat{j} 9\hat{k}$
- b) $\frac{31\hat{\imath}-38\hat{\jmath}-9\hat{k}}{\sqrt{2486}}$
- c) $\frac{31\hat{i}+38\hat{j}+9\hat{k}}{\sqrt{2486}}$
- d) None of these

SMARTLEARN COACHING